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Preface

This study is another link in a growing chain of research at the

Air Force Institute of Technology to design a tracking algorithm for

use with the Air Force Weapons Laboratory's high energy laser weapon

system. As such, my work extends the multiple model adaptive filter

developed by Lt. Robert I. Suizu and investigates Bayesian vs maximum

a posteriori estimation using the multiple model adaptive filter

concept.

I owe alot to my predecessors in this effort; without whom an

investigation of this complexity could not have been attempted. My

sincere gratitude goes to Dr. Peter S. Maybeck, my thesis advisor,

for the effort and time expended on my behalf. His ability to

consistently fan the flames of my enthusiasm and challenge my mind
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Abstract

Previous efforts at the Air Force Institute of Technology have

led to the development of a multiple model adaptive filter (MMAF)

tracking algorithm which demonstrates significant improvements in

performance against close-range, highly dynamic, airborne targets,

over a direct correlation method currently in use. The basic

elemental filter in the MMAF bank combines an enhanced correlator and

a linear Kalman filter. Digital signal processing techniques are

used to derive a target shape function from the forward looking

infrared sensor data. This shape function is used as a template in

the correlation algorithm which generates offset pseudo-measurements

for the update portion of a linear Kalman filter. The multiple

models are created by tuning the basic model for "best" performance

V against differing target maneuvering behavior and with physically

different fields of view. The outputs of three independent elemental

filters, each receiving data from a shared sensor are used to

generate a single adaptive estimate of the state via a probabilistic

weighted average (Bayesian form) or by selection of the one elemental

filter associated with the highest probability (MAP form). The

adaptive state estimate can produce target position predictions to be

used in generating feedback control for maintaining the target in the

center of the field of view.

There are two main results from this effort. The addition of a

third elemental filter to the baseline MMAF improves tracking per-

formance over the two-element MMAF. Specifically, the peak error -

following a maneuver is significantly reduced. However, the MAP

estimation approach does not differ significantly from the Bayesian

approach.

xi
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BAYESIAN VS MAP
MULTIPLE MODEL ADAPTIVE ESTIMATION

FOR FIELD OF VIEW EXPANSION IN
TRACKING AIRBORNE TARGETS

I. INTRODUCTION

Since the inception of the Strategic Defense Initiative (SDI),

increasing interest has been focused on laser weapon systems. The

extremely tight specifications required for the pointing and tracking

systems supporting these laser weapons has motivated research into

innovative methods of accurately tracking targets maneuvering at high

velocities.

th1.1 Background

The Air Force Weapons Laboratory at Kirtland AFB, New Mexico,

maintains ongoing research efforts using high energy laser weapons

against airborne targets. Currently, pointing and tracking functions

are accomplished by a correlation algorithm. A Forward Looking Infra-

Red (FLIR) sensor makes target measurements, which the operational

correlator uses, comparing data from the previous sample period to data

available during the current sample time. Cross correlations of the

data sets generate relative positions offsets, presumably due to target

motion. These offsets are used to center the target in the FLIR field

of view (FOV). Allowing for boresight error corrections, the laser is

coupled to the FLIR so that positioning the center of the sensor FOV -

also points the laser toward the target.

. . . .. . . . . . . . . . . . . . . . . ... .--



Although the correlation tracker performs reasonably well against a

wide variety of targets, it has several inherent limitations. The

algorithm processes the most recent data, providing information on the

current position of the target relative to the target position at the

last sample time. Controls are applied some finite calculation time

later. This delay causes pointing errors, which become increasingly

detrimental with highly maneuverable targets. Additionally, the

relative offsets are a function of image changes between one frame and I

the next, deviations not entirely due to target motion. These

deviations can also be attributed to mirror vibration, atmospheric

distortion, and inherent FLIR measurement errors. The correlator does

not differentiate between the effects of these error sources and actual

target motion. Research into alternate tracking algorithms is motivated

by the above limitations. Since 1978, the Air Force Institute of

Technology has supported a number of Master's theses demonstrating the

feasibility and performance of a tracking algorithm based on Kalman

filtering techniques.

The Kalman filter directly addresses the previously mentioned

limitations, by attempting to separate actual target motion from other

phenomena that are observed as apparent target motion. Using the

statistical characteristics of atmospheric jitter and measurement

errors, and a model of the anticipated target dynamics, the filter

predicts an estimated target position. This prediction allows the

FIR to anticipate target motion, thus reducing tracking error due to

time delays.

2

7 .,



The initial feasibility study by Mercier [6], based on a four-

state extended Kalman filter, assumed the distant target's intensity

pattern on the FLIR image plane could be well modeled as a bivariate

Gaussian distribution. This filter was based on a benign target

dynamics model with target position represented by a zero mean, first

order Gauss-Markov process. The filter's model for noise in the

individual FLIR pixel intensity measurements was uncorrelated in time

and space. This algorithm produced an order of magnitude improvement

in tracking error over the correlation algorithm, in benign scenarios

with filter parameters well-matched to the real world environment.

In robustness studies conducted by Harnly and Jensen [3], the

spread, size, and shape of the target intensity pattern were varied to

study the filter's sensitivities to incorrect assumptions. More

dynamic target motion and adaptive estimation of target shape, still

assuming bivariate Gaussian profiles, but with generally noncircular

constant intensity contours, were incorporated and the filter's dynamic

model was expanded to estimate velocity and acceleration. Spatial and

temporal noise correlations were investigated, leading to the addition

of a nearest-two-pixels spatial correlation for the filter's noise

model. In an effort to track the maneuvering target, gain changes and

other adaptations based on ad hoc responses to a maneuver detection were

added to the filter. While the results were encouraging, the filter

still experienced difficulty with harsh maneuvers differing from the

assumed target dynamics model.

3
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SUp until this point, the filters have all assumed a known target

intensity shape function with a single peak. In contrast, Singletery

[12] and Rogers [11] developed signal processing techniques to derive

the target shape function based on the intensity measurements. This

technique was tested against multiple-hot-spot targets with dynamic

variations. These efforts, concentrating on the shape function

derivation, only pursued the benign target dynamics (as seen in

Mercier's formulation). Rogers developed an alternative filter

algorithm using the target shape function as a template for an

enchanced correlator, rather than using it as a measurement function

for an extended Kalman filter. The correlator produced offsets, x and

y, from the center of the sensor FOV which were used as "measurement"

inputs to a linear Kalman filter. The linear Kalman filter requires a

much lower level of computational resources than the extended Kalman

filter and would be preferable if comparable performance were achieved.

In fact, comparable RMS tracking errors were produced in performance

analyses, with the extended Kalman filter yielding a larger mean errors,

while the linear filter/correlator combination produced larger standard

deviations.

Follow-on research by Millner [8] and Kozemchak [4], incorporated

more accurate target dynamics models. Both the extended Kalman filter

and the linear filter/correlator algorithm were tested against close .-

range targets, with maneuvers of up to 20 g's. Again, the extended

Kalman filter exhibited larger biases and smaller standard deviations

than the linear filter/correlator. However, both filter formulations

4
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were slow to respond to harsh maneuvers that differed significantly from

the f ilter's assumed target dynamics models and the tradeof f between

precision tracking of benign targets versus maintaining lock on a highly

maneuvering target was not completely resolved.

En an effort to address this limitation, Flynn [2] initially

investigated a multiple model adaptive filter (MMAF). The

attractiveness of this approach was increased by the potential for

distributed processing. The NMAF was successfully implemented by Suizu

(13]. Based on probabilistic weighting, the f ilter adaptively changed

target dynamics model and FOV size, allowing the filter to maintain lock

and track targets performing 20 g pull-ups at ranges of 20 km. This

approach was tested using both the extended Kalman filter and the linear

f ilter/correlator with both exponentially time-correlated acceleration

and constant turn-rate dynamics models. The two types of filters

continued the same relative performance as seen in [8] and [4], but were

capable of tracking targets with trajectories that differed

significantly in maneuver magnitude during the course of the tracking

scenario.

1.2 Problem

This effort concentrates on expanding the multiple model

linear/ correlator algorithm developed by Suizu [13]. The potential for

decreased computational loading' compared to the extended Kalman filter,

while maintaining comparable accuracy, makes this filter more attractive

for further development. The model, as developed, will be operated at a

100 Hz sampling rate, as well as 30 1Hz, to investigate the potential

benef it of optical implementation of the algorithms discussed by Rogers

5



[111 and Roemer [10]. Additionally, the simulation will be extended

beyond the current five seconds; both filters currently exhibit some

difficulty with the minimum range/maximum crossing rate conditions at

the 5 second point in the simulation, and this will allow exploration of

tracking performance beyond this difficult period. To improve overall

performance against highly maneuvering targets, another filter is

incorporated in the MMAF tracker. Additionally, Maximum a Posteriori

(MAP) estimation is compared to Bayesian estimation, i.e., producing an

adaptive state estimate from the one model associated with the highest

probability of validity rather than from a probabilistically weighted

average of all models. This comparison explores the tradeoff between

faster response to maneuvers and decreased accuracy of the estimate.

Within the MMAF is a bank of N separate filters. Each of these can be

an extended Kalman filter or a linear filter/correlator combination in

this problem.

1.2.1 The Extended Kalman Filter Tracker. The extended Kalman

filter algorithm uses measurements from the FUR sensor to update the

state estimate, which is propagated forward in time, based on the

dynamics model of the Kalman filter and used to control the FLIR/laser

orientation as shown in Figure 1-1. The measurement vector z(ti)

consists of the intensity output of 64 pixels arranged in an 8-by-8

"tracking window". The extended Kalman filter uses the linearized and

nonlinear intensity functions ( H[X(t ),tiI and h[x(t1 ),ti ] ), along

with the measurement vector z(ti), to update the state estimate based on

the equation

6
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.::' (t i )+ )  + K(t i ) [ z t (i )  ,t () 1

where

x(ti) = state estimate after update

x(ti) state estimate prior to update

K(t i) = Kalman filter gain

z(t ) = measurement vector; the assumed model is:

z(ti) = h[x(t1 )tiI + v(t).

h[x(t-),ti] = intensity shape function for measurements at t as a
function of the state estimate

H[x(tJ),t - h/Dx; the linearized intensity function evaluated at
- i(ti) at time ti used to generate K(t.)

v(t )=measurement noise

Based on the internal dynamics models, the Kalman filter will propagate

the estimate forward one sample period. The controller uses this

information to orient the FLIR so that the center of the FOV is pointing

Fat the predicted target position. It is assumed that the controller is

capable of repositioning in less than one sample period.

The upper path of Figure 1-1 details the generation of the

intensity shape functions at each sample point. First, the input data 7

from the FLIR is Fourier transformed; the transformation is motivated by

the possibility of optical processing and the comparative ease of

performing the necessary computations in the frequency domain. The

original 8-by-8 tracking window is expanded into a 24-by-24 data array,

since the larger array reduces errors due to edge effects, aliasing, and

S
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". leakage conditions encountered in transforming a finite sequence

[12:181. In this application, the larger 24-by-24 array is produced by

padding the 8-by-8 tracking data with additional intensity data

available from the FLIR.

This transformed 24-by-24 data array is altered so as to center the

target intensity pattern and then temporally averaged with the previous

frames of transformed and centered data, to generate the desired

nonlinear intensity function. This insures that any variations in the

data are primarily due to noise and not changes in the target position

in the FOV. The "centering" in the original domain is actually

performed by multiplying the transformed data by a negating phase shift,

based on the shifting property of the Fourier transform [9]. The

negating phase shift is the complex conjugate of the linear phase shift

% due to the (estimated) target image offset in the spatial domain. This

offset is obtained from the updated state estimates of the extended

Kalman filter.

After centering, the data is filtered by exponential smoothing.

This exponential smoothing approximates a true time averaging without

the corresponding need to maintain numerous frames of data in memory.

Because the noise is expected to vary more from frame to frame than the

target intensity pattern, its effect is reduced by averaging successive

frames of data. The resulting image is used as the target intensity

shape function, h[E(t ),ti], The linearized intensity function,

H[x(t-),ti ]  is obtained by applying the derivative property of the

Fourier transform, which requires only a simple multiplication.

9
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- - These linear and nonlinear shape functions are used to update the

state estimates at the next measurement. To insure the proper location

of the shape function in the FOV, both functions are evaluated using the

propagated state estimates, x(ti.4 ). It is assumed that the FUR is

centered on the position predicted by the target dynamics model. Thus,

the intensity functions are evaluated at the position predicted by the

atmospheric states, if there is a single elemental filter; this must be

modified in the multiple model adaptive filter, and the modification is

discussed in Section 4.4. The Fourier transform shifting property is

applied again to phase shift the transformed image by the estimated

atmospheric offset. Finally, the inverse Fourier transform is

performed, returning the intensity functions to the spatial domain for

use in the next update cycle.

1.2.2 Linear Kalman Filter/Correlation Tracker. The linear

filter/correlator developed by Rogers [ii] is very similar to the

extended Kalman filter algorithm depicted in Figure 1-1. The evaluation

of H is no longer required; but otherwise, the upper path remains the

same. The h and z are not used directly by the Kalman filter. The

intensity function, h[x(t i+l),ti+l, is used as a template by an

enhanced correlator algorithm. Sensor measurements are compared to the

template, producing estimated offsets between the target centroid and

the center of the sensor FOV. These two scalar offsets are pseudo-

measurement inputs to a linear Kalman filter (the filter of Section

1.2.1 was nonlinear only in the measurement update portion of the

algorithm when a linear state propagation model is used). In all other

Srespects, the two tracking algorithms are the same.

10
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1.3 Overview

The following chapters expand the details of the algorithm, the

testing environment, and the results. Chapter II presents the

mathematical foundation for the multiple model algorithm for Bayesian

estimation and MAP estimation. The truth model is covered in Chapter

III, establishing the standard for performance evaluation. Chapter IV

describes the basic linear filter/correlator model in detail along with

the MMAF implementation. Chapter V covers the tracker statistics,

parameters, plot formats, and the test scenarios. Finally, Chapter VI

contains the performance analysis. The conclusions and recommendations

are in Chapter VII.

11
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II. THEORETICAL DEVELOPMENT OF MULTIPLE MODEL ADAPTIVE ESTIMATION

From a Bayesian point of view, it would be desirable to be able to

generate the conditional density function of the state given the

measurement history; with this density function, a good estimate of the

state vector, x, is obtained by evaluating E(x(t)I Z.}, the conditional
0

expectation of the state given the measurement history. If the target

motion is adequately described by the linear Kalman filter dynamics

model, this conditional mean is easily calculated. However, in this

problem the appropriate target dynamics model may be uncertain and/or

time varying. Let a be the vector of uncertain parameters in the

Kalman filter dynamics model. In order to estimate the state vector

properly, it is also necessary to estimate a, thus motivating the

evaluation of f x,a1Z the joint density of x and a given the measurement

history. The evaluation of this density function is the core of

Bayesian estimation [5:129].

2.1 Mathematical Development

Application of Bayes theorem to the joint conditional density

function of the variables to be estimated, given the measurements,

yields:

f x =lz f xa f aZ(2-1)

The first term on the right hand side of the equal sign is a Gaussian

distribution, if the adequate system models are in the form of a linear

12
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state differential and linear measurement equation, all driven by white

Gaussian noises. As such, it is totally specified by its mean and

covariance, which are the outputs of a Kalman filter based on one

particular value of a. The second term can be expressed as

f .~a l _ f a 1Zf zia'Zi- i-I (2-2)
faIZ = zi.,Z_ f d a

jzaZ fZi-

where a is a dummy variable associated with a values, and

z.

".i--i-

and

Z = the composite vector of all measurements prior
to time t.

z. = the vector of measurements available at
i time t

The first numerator term in Equation (2-2) is a Gaussian density

-T
function with mean H(t )x(t ) and covariance [H(ti)P(t.)H(ti)+R(ti)],

calculated by a Kalman filter based on a given value of a. Starting

with f = f (a), the a priori probability of a particular dynamics

model correctly modeling the actual target motion at the initial time

(letting a determine the applicable dynamics model), Equation (2-2) can

be calculated recursively. Having evaluated both terms in Equation

(2-1), the desired conditional mean E(x(ti )IZ i , is readily determined.

1 3..
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E f x(t)Z i } f x z d.

3 f4 L- x,a z dci] d,

f(xlaZil fa d"

This result is based on Equation (2-1), the concept of marginal

densities, Bayes' theorem, and changing the order of integration. While

the above calculations achieve the desired estimate, they are

computationally unattractive. On-line implementation of the integrals

is difficult and time consuming, if at all tractable. The additional

requirement for an infinite number of Kalman filters to span the

continuous a parameter space suggests that a judicious discretization

might provide a more feasible approach.

Discretization of the parameter space allows the integrals over a

to be evaluated as the summation of all possible a values. Assume the

parameter a can take on a finite number of values, selected to span t',e

set of possible values in the continuous parameter space and represented ,.'"

by the set {al,a 2 ,...N}. Each element Ak represents a different system

model, which is ultimately reflected, in this application, as a separate

Kalman filter based on the dynamics model (and appropriate FOV size)

defined by Ak. Bayesian estimation, using the outputs of the N filters,

requires an a priori density function for a as well as x(t ). Let
- - 0

Pk(to) represent the probability that the model specified by is thek- .

best representation of the true target dynamics at the initial time.

Also define the hypothesis conditional probability Pk(ti) as

P (t) =pr LIa = a]Z 1 i Y (2-4)"'"
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The development of the recursive calculation of this value and the

conditional mean and covariance of the state, given the measurement

history, follows directly from Equation (2-2) and Equation (2-3), noting

that f is comprised of a sum of weighted Dirac delta functions
a1Z

weighted by Pk(ti)

f" fzi~~ak Zi_ •P(ti)

Pk(ti) - i (2-5)
Z z aj ' pj (t i

for k = 1,2,...,N

The recursion for Pk(ti) is expressed in terms of Pk(ti-l) and other

elements that can be evaluated. In terms of these Pk(ti) values,

Equation (2-3) becomes

N
1_(t.) = Z EfX(t l_,Zil pk(ti)

N (2-6)
k-1 -kti) Pk(ti )

where k(ti) is produced by the Kalman filter that assumes the

parameter vector equals . The denominator of Equation (2-5) is a

normalizing constant that is the same for each conditional probability,

Pk(ti), and is the sum of all the numerator terms. If these

calculations are implemented by distributed processing, the numerators

of Equation (2-5), for k 1,2,...,N, can be calculated in parallel,

along with each of the N separate filters. An estimate of a can be

calculated but is not required to calculate state estimates. The

conditional covariance of x(t) is

15
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k=1~ ~ ~ ~ pti fti + k(t+ (t+)

+ T (2-7)
,' r (t+  -X++7T }

where E(t i ) is the state error covariance calculated by the Kalman

filter based on 4. If P (t) is desired, it must be computed on-line

because it depends on the actual measurement history; however, it is not

essential to the operation of the on-line algorithm. As seen in

Equation (2-6), the state estimate resulting from this development is

the probabilistically weighted average of the state estimates generated

by N separate Kalman filters.

2.2 The Multiple Model Adaptive Filter

The multiple model adaptive filtering (MMAF) algorithm is based on

the previous development. As depicted in Figure 2-1, the MMAF is

composed of N separate Kalman filters, each based on a discrete value,

of the parameter vector. At time ti , the measurement z is

processed, generating residuals rI(t i), r2 (ti) ,...rN(ti) . The residuals

are used to evaluate the hypothesis conditional probabilities, pk(ti),

according to Equation (2-5). The probability Pk(til) needed for this

iteration is maintained from the last sample period and

f = I exp{Ai_.~ ~ Ziak'Zi- (2 ) / 2  (t )
I /

(2-8)

f-1/2 kT(ti)A k-l(ti) ti)

16
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where m is the number of measurements and k(t i ) is available from the

kth filter as

&(t) = ti)P(ti) (ti + 4,(t.) (2-9)

Finally, the adaptive state estimate is generated as the probablis-

tically weighted average seen in Equation (2-6), portrayed as the output

of the summing junction in Figure 2-1.

One expects that the filter that most nearly represents the true

target motion will produce a true residual covariance very close to its

internally computed 4(ti). The "mismatched" filters should produce

larger residuals than anticipated, so that Equation (2-5) leads to a

heavier weighting of the estimates produced by the "best" filter. The

* algorithm's performance depends on the existence of significant

differences between the residuals of the "correct" filter and the

"mismatched" filters. These significant differences can be enhanced by

specifically tuning each filter for its best performance against a

target trajectory that matches its internal dynamics model. The common

practice of "conservative" tuning of a single nonadaptive Kalman filter

by adding additional dynamics pseudo-noise should be avoided, since it

tends to blur the distinctions between the estimates and residuals based

on different models.

Additionally, the calculated probabilities should have an

artificially enforced lower bound. By bounding the lower value, the

of a "bad" filter is prevented from converging to zero, which would

effectively remove that filter from the bank and prevent the MMAF from

18
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responding as accurately or rapidly to future changes in the parameter

values. After bounding, the Pk values are rescaled so that the

probabilities still sum to one. The selection of the lower bound value

can significantly affect the accuracy of the estimate due to

inappropriate weighting of the "mismatched" filters. A bound of 0.001

is selected for this effort.

In this application, the MMAF consists of a bank of either two or

three elemental filters. Each elemental filter has the same form;

however, they are tuned for different assumed target trajectories. Each

filter acquires data from a wide tracking window (24-by-24 pixels) or a

narrow tracking window (8-by-8 pixels), allowing the filter to maintain

lock on a highly dynamic target or providing greater resolution for more

benign target motion, respectively. Specifically, the two-filter MMAF's

first filter is optimized for a benign trajectory and an associated

small tracking window, and the second filter, for a 20 g pull-up target

maneuver with a larger tracking window being used. The three-filter

MMAF contains the first two elemental filters plus a narrow-FOV filter -

tuned to perform well against 10 g maneuvers. By changing the

probabilistic weights, the MMAF adaptively changes tracking window size

and dynamics model. The current two-filter MMAF has a very coarsely

discretized parameter space; this results in poorer performance against

trajectories which are not modeled by one of the elemental filters. A

finer discretization, yielding three or more elemental filters, plus the

added ability to restart a diverging element filter (using estimates

from the nondiverging filter(s) to accomplish the "restart") should

produce more accurate tracking than purposefully detuning the elemental

filters to prevent divergence of the MMAF when tracking a 20 g maneuver.

191
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2.3 Maximum A PosteriordEstimation Algorithm

Maximum a posteriori (MAP) state estimation is based on calculating

the mode of f Under the standard linear system, Gaussian noise
xlz.

assumptions for a Kalman filter development, the conditional mean,

x(t+), is the mode. However, due to the uncertain character of the

parameter vector a, one must consider the joint conditional density

function, f In this case, it is reasonable to assume that the

conditional mean (or mode), calculated by the filter based on the most

probable k (the one with the highest k is a good approximation La the

true mode of f This is not just an approximation if a is truly
x,alZ

discrete-valued.

The MAP multiple model filter calculates pk(ti) as shown in Section

2.2. However, unlike the Bayesian MMAF, the MAP estimate is not the

optimally weighted average of the elemental filter estimates. Instead,

it is assumed that the single filter with highest pk(ti) is the most

likely representation of the true target behavior. The estimate,

4(ti), produced by this single filter is used as the MAP MMAF estimate

until another filter becomes the "best" match to the actual target

dynamics.

The MAP approach to estimation has positive and negative aspects as

compared to the Bayesian approach. It is expected that the MAP estimator

will respond more rapidly to changes in target maneuver characteristics.

Moreover, when the true target motion is well matched to one of the

filters in the bank, estimation accuracy is not degraded significantly

by including information from the "mismatched" filters. However, since

the need to reduce computational loading requires a coarse

20
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.- discretization of the parameter space, the true target behavior often is

not well matched to any one filter in the bank. In this case, the

estimator operates with an inappropriate dynamics model and can be

expected to provide degraded performance. The Bayesian estimator

provides higher accuracy when none of the models match the true target

behavior because of its probabilistically weighted averaging. Each of

the approaches are based on sound reasoning, leaving experimental

results to determine which approach provides the best results for a

given problem.
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III. TRUTH MODEL

3.1 Introduction

The truth model provides the simulation's standard of performance;

the standard to which the filter estimates are compared and the

"reality" from which the measurement input is constructed. As such, it

should provide a close approximation to the real world environment,

particularly in the areas critical to the problem of concern. The

processes of importance in this investigation are atmospheric jitter,

target dynamics and shape effects, and background and FLIR noises.

Vibrational effects can also be significant, but are neglected here,

based on the assumption of a ground based weapon system. These

processes are important because they contribute to apparent target

motion as observed by the sensor.

Apparent target motion is described using an x-y coordinate system

in the FLIR image plane, expressed in units of pixels (a pixel is 20

1i rads-by-20 prads). The coordinates of the observed target centroid

are the sum of the offsets from the cente'- of the FOV due to actual

target motion and the offsets due to atmospheric disturbances

xC - xD + XA

where

x- observed centroid x coordinate

xD .x coordinate of the offset due to dynamics

x- x coordinate of the offset due to atmospherics

and similarly for y.

22
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Target motion in the truth model is described by a linear

stochastic differential equation [5:163]

x(t) = F x(t) + B u(t) + G w(t)

where the state vector, x(t), is composed of the target position and

atmospheric states. The Bu term consists of deterministic velocities

applied to move the target in a preselected inertial trajectory. The

white Gaussian noise term drives the atmospheric jitter "shaping

filter" to generate xA and y

The measurements used by the filter algorithm are derived from the

truth states using the target image intensity function developed later

in this chapter. Values derived from this intensity function are

corrupted by adding spatially correlated and temporarily uncorrelated

noise, accounting for FLIR and background noises. The 64-element
.4-

vector thus constructed is compared to a template, derived from

earlier data, by the correlator portion of the tracking algorithm to

produce the offset values used as measurement input to the linear

Kalman filter. The measurement is related to the state variables by

the following discrete-time linear stochastic equation

Z(ti) - H X(ti) + v(t1)

The target model and the measurement model incorporated in the

same simulation truth model are described in this chapter, which covers

target dynamics, atmospheric effects, the various coordinate frames,

23
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the transformation of inertial motion to the FLIR image plane

coordinates, and the inertial target trajectories used for this effort.

The target intensity function, the target image projection, and noise

effects are defined in greater detail as well. Significant aspects of

the truth model could be replaced with actual data; however, this

approach of simulating a truth model provides control over many aspects

not typically available from test data.

3.2 Truth State Model

The truth model describes the apparent motion due to dynamics and

atmospheric effects. The target dynamics model, developed by Harnly

and Jensen [3], provides the true location of the target center of mass

in the FLIR image plane horizontal and vertical directions.

Additionally, this section presents the equations which translate a

simulated target inertial trajectory into two dimensional motion on the

FUR image plane.

In order to evaluate specific trajectories, a deterministic model

provides the target location time history. The first two elements of

the state vector, x and x2, are the dynamic states in the horizontal

and vertical directiuns in the FLIR image plane. Because of the large

distances, the azimuth angle, a , and elevation angle, a , are

essentially the linear coordinates, x and y, of the target centroid

position in this FLIR image plane. More details regarding this

relation are provided later in this chapter. In order to conform to

the linear differential equation format, the deterministic inputs must

be a and 8 instead of a and 6 directly. Based on

24
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S2
l(t) = c (t)j

2t)= 8(t)"-

the model's dynamic motion can be expressed as

D (t) = u(t) = [c (t) (t)JT (3-1)

The atmospheric disturbances, developed by Mercier [61, are

modeled as third order Gauss-Markov processes in both the horizontal

(x) and vertical (y) image plane directions. In the x-direction this

yields

KABWA --] (s+A)(s+B)2  XA

where

wA =unit strength, zero-mean, white Gaussian noise

K = system gain, adjust for desired atmospheric RMS value

A = break frequency; 14.14 rads/sec

B - break frequency; 659.5 rads/sec

xA = output of the shaping filter

Thus, the atmospheric jitter is represented in x and y directions

by the stochastic differential equation

xA(t) =F x (t) +G A(t) (3-2)
- ---A-A
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where

x (t) = six atmospheric noise states
z-A

F= atmospheric plant matrix

G = atmospheric noise input matrix

At) = vector of white Gaussian noise inputs with statistics

E{WA(t)} =0

TE{WA (t) (t+} = Q (t) 6(T)

V-;-A -A

The atmospheric states are augmented with the dynamic states, producing

an augmented state differential equation with components given by

Equations (3-1) and (3-2). The augmented system is then converted to

the equivalent discrete time form [3]. The propagation of the target

motion takes the form

-x(ti+) = 4(ti 1l,ti) + l (t.) + L Ad(ti) (3-3)

where

x(ti) = state vector (two dynamic states and six atmospheric
1 states)

B (t.) = 2-by-2 dynamics input matrix I At, whereAt= t - t.

U t ) = piecewise constant function (between sample times)
evaluated at midpoint to approximate the integral

of (t) and U(t) from t to t

Fc"t. + At/2)iiI
S(ti) [ (t. + At/2)J

Ad(t ) = discrete-time white Gaussian noise
-Ad6-
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E{WAd (ti)} = O

E{WAd(ti)wAd(t)} = 6i

and

T

jTd ~ A V9d(ti) = -Ad (t) []i

where represents the Cholesky square root of Qd" [5]

The state transition matrix is

1 0 0 0 0 0 0 0
0 1 OAAt  0 0 0 0 0
0 0 eA OBAt 2BAt 0 0 0

'(ti,ti) 0 0 0 e te BAt 0 0 0
i+1 i0 0 0 0 e- 0 0 0

-AAt0 0 0 0 0 e 0 BAt
0 0 0 0 0 0 eB tAteO t
0 0 0 0 0 0 0 e

Equation (3-3) is developed in detail in reference [3].

As stated earlier, azimuth velocity, a (t), and elevation velocity,

i(t), are derived from deterministic inertial velocities. The inertial

velocities must be projected into the FLIR image plane coordinates,

based on the geometry in Figure 3-1.

r

z x

ZI

Figure 3-1. Inertial Coordinate Frame
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where

xI' z' zI = inertial axes

r = range from tracker origin to target

r= horizontal range

v = target inertial velocity

a = azimuth angular displacement

= elevation angular displacement

The geometry associated with azimuth direction is shown in Figure 3-2.

xx
-azimuth

zI

Figure 3-2. Azimuth Geometry

from Figure 3-2

at(t) = tan z1(t) (rads) (3-4)

Lxi ~t)]j
and so

a(t) = xl(t)z I - zl(t)Xl(t) (rads/sec) (3-5)
Zl2Mt + xl2t M

The azimuth velocity from Equation (3-5) is in rads/sec, which must be . -

6
converted to pixels/sec by dividing by 20 x 10 rads/pixel [3:331.
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*Similarly, Figure 3-3 illustrates the geometry involved in

computing the elevation velocity.

Y.I

rh plane

Figure 3-3. Elevation Geometry

where

r(t) =range [x2 (t) + ,2 (t) + Z t 2 M l/2-

2 2 1/2

rht M horizontal range =[x 1 (t) + z1 (t)

and

~() tan - (rads) (3-6)

so that

(t) r rh (t) ) M ytIW~h(t) (rads/sec) (3-7)

2
r (t)

where, from the r (t) expression above, it can be seen that
h

rh(t) = Yt)c 1 (t) + ZI(t)I1(t)

rh t

Once again, the velocity must be converted to pixels/sec.

29



-'- - :' .' 7 - o--- .- ,- Z -- ,- - -: - . . - .. . - .. . . .. ........ . . ...... • . . . -.- •. ... .. • ' - v - v - . .

By substituting Equations (3-5) and (3-7) into Equation (3-1), the

truth model generates target motion for the desired trajectory.

3.3 Target Trajectories

A number of deterministic trajectories are available which

incorporate several different maneuver options. These trajectories are

designed to provide realistic target behavior with fairly simple

models. The basic equations are described in detail by Millner [8].

Trajectory one - This trajectory, as shown in Figure 3-4, is very

benign. The target flies a constant-heading, straight-and-level

course. The inertial velocity, LI is constant for the entire maneuver

and is parallel to the xl-z I plane.

,°.I

-1

Figure 3-4. Trajectory One

Either wings-level flight or a constant roll-rate maneuver

(positive roll rate defined by the right hand rule) may be simulated.

Trajectory Two - In order to evaluate the filter response to more

dynamic behavior, this trajectory simulates a constant-g pull-up. The

target initially flies trajectory one (wings level, one-g flight) until

t = 2.0 seconds, allowing the filter to obtain good position estimates

before the maneuver is initiated.
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Figure 3-5. Trajectory Two

The pull-up is started with a step change to the pitch rate.

While this is an unrealistic behavior, it is more harsh than maneuvers

encountered in the real world, and the tracker should perform at least

as well against real world targets.

Trajectory Three - This trajectory contains two maneuver changes,

providing a means to evaluate tracking performance against a target

that begins and ends a pull-up maneuver. As with trajectory two, a

constant-g pull-up is executed; however, the pull-up is terminated at

t 3.5 seconds, prior to the end of the simulation. The target -

acceleration is impulsively set to zero; the inertial velocity the

target has at that point remains constant until the end of the

simulation.

Trajectory Four - This trajectory displays motion in all three

inertial directions. Like trajectory two, the target initially flies

straight and level and then, at t = 2.0 seconds, the target performs a

constant-g pull-up, but in the -zI direction rather than the +yI I-

direction (see Figure 3-5). The projected target image on the FLIR

image plane changes more dramatically in this out-of-plane maneuver.

This variation allows investigation of the filter's response to dynamic

changes in the orientation and spacing of the individual hot-spots that

compose the target intensity profile on the FLIR image plane.
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3.4 Coordinate Frames

The dynamics of various parts of the target relative to its center

of mass must be known to project the target image accurately onto the

FUR plane. This projection is required to calculate the intensity

values for measurement inputs. Definition of two additional coordinate

frames facilitates these calculations.

Target Frame - The origin of the target frame is the target's

center of mass. The first axis is coincident with the velocity vector.

Perpendicular to the first, the second axis points out the right side

of the target. The final axis completes the right hand system and

points out the underside of the target fuselage. In this simulation,

the multiple hot spots are assumed to lie in the e -e plane. The
-V -pv

target coordinate system is expressed as unit vectors ev, e v and e
- -ppv

(v: direction of the velocity vector, pv: perpendicular to velocity,

ppv: perpendicular to both).

a - 8 plane - The origin of this frame is also the target center of

mass. One basis vector, e , is aligned with the true line of sight• -

from the tracker (located at the inertial coordinate system origin).

The plane of interest is defined by unit vectors e and e which are

rotated from the inertial frame by the angles a and 8, as shown in

Figure 3-1.
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3.5 Measurement Model

The measurements developed for the tracking filter are derived

from the projection of the target intensity function onto the FLIR

image plane. FLIR and background noises corrupt the intensity

function. At close range, targets can be well modeled as the sum of

bivariate Gaussian functions with elliptical contours [3]. As shown in

Figure 3-6, the apparent target image eventually resolves into separate

hot spots.

CENTROID OF
APPARENT TARGET

EQUAL-INTENSITY INTENSITY PROFILE
CONTOURS

YPIAK

78-BY-S ARRAY OF PIXELS

Figure 3-6. Apparent Target Intensity Pattern on FLIR Image Plane
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This simulation used three identically distributed hot spots, each of

which is described by the following intensity function.

I [x,y,X (t),y (t)] 1 exp J-0.5 [x-xp ) (y-Yp )]

peak peak max peak peak

[P]-L [XX peak) (Ypeak)i 
T

(3-8)

where

I - maximum intensity of the hot spot
max

x Y - coordinates of the peak intensity of the hot spot
peak' Ypeak

2
P - matrix whose eigenvalues are a and a , which

are the dispersions of the Pv elliptical
constant-intensity contours in the target frame,
and whose eigenvectors define the orientation of
the ellipse principal axes

The x- and y-coordinates in this function are calculated in pixels

relative to the center of the tracker field of view.

The location of the hot spots are expressed in the target

coordinate frame. The intensity function centroid for single hot spot

targets are assumed coincident with the target center of mass. In this

study, the multiple hot spots are distributed as shown in Figure 3-7

[8:401.

-pv

Mass Centroid

Figure 3-7. Hot Spot Distribution
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Hot spot one is located at 1.0 meters in the +e direction; two and
-v

three are located at +0.5 meters in the e direction. It is assumed

that the semi-major axes of the ellipses are parallel and aligned with

the velocity vector. The velocity vector remains out the nose of the

target for one entire simulation. While these are not realistic

assumptions, they facilitate the simulation of target dynamics, and the

tracking algorithm can be expected to perform as well against live

targets.

The measurements for both single and multiple hot spot cases are

the average intensity values from each pixel of an 8-by-8 tracking

window. This intensity is the sum of each hot spot contribution and

background and FUR noises. The measurement value for pixel kl: . -

z kl(ti) = (l/A m[Xyxpeakm(ti) ,Ypeakm(t i)Idxdy} + vkl(ti)

pixel k1 (3-9)

where

Im[*] = intensity function of the mth hot spot of M total hot spots

th th th
zkl(ti) = output of the kl pixel (k row, 1 column) at time ti;

the average intensity at that pixel as sensed by a detector
in the FUR image plane.

A = area of one pixel
P

th
(x,y) = coordinates of any point within the kl pixel

th
(xpeakmyeak) = location of one peak of the m intensity function

at t

th
vkl(ti) = additive FUR and background noises for the k1 pixel
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3.6 Target Image

During the course of the simulation, the target size and hot spot

distribution on the target will not change; however, as the target

maneuvers and approaches the sensor, the target image on the FLIR

sensor does vary. In order to simulate these variations, the target

image at any given time is referenced to a previously defined standard

image. The target image is developed in the target frame and then

projected onto the a -B plane, described in Section 3.3; the geometry

is illustrated in Figure 3-8.

e r

V

Target

e .. - eii-

ILOS

* Tracker

Figure 3-8. Image Projection [9:11-23]

The reference image is defined with the target flat in a plane

perpendicular to the tracker line of sight. Any other orientation L

would produce a smaller image. The following expressions relate the

current image size to the reference image based on the current range

and velocity of the target [9:11-24].
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a pv =po (P/P)

av = (F1/) [°pvo + (a vo-a v) Cos ]

-. " °pv F + (2 L~os)/T I

where

vo' $vo the dispersion of the reference target image

along the major and minor axes of the radiation
ellipsoid, parallel and perpendicular to the
velocity vector.

a v'pv = The current dispersions of the target image

p = reference range from the sensor to the target
0

= current range

vI = inertial velocity

(v = projection of v onto the a - 6 plane
-.LOS) -

= angle between the inertial velocity vector and
the a- 6 plane, shown in Figure 3-8.-

AR a 0 y
vo pvo - maximum aspect ratio of the reference

image

The image resulting from the above equation is defined in the

target frame coordinates. Both the coordinates of the hot spot centers

and the dispersion matrix must be transformed into a - B plane

coordinates [9:11-25]. From Figure 3-8

cose . -t)/[V'LOSl

sin e (t)/[v±LOS"

where (v is the magnitude of the velocity perpendicular to the

2 2 1/2
tracker line of sight, defined as [a(t) + "(t) I The hot spot

coordinates are transformed to a - B coordinates by
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x[ x ] [ se -sin

[y 8 mi cosej li target frame = A x

The dispersion matrix is transformed using

P a A P AT

The inverse of P a8 is required for Equation (3-8). This is

conveniently obtained by using the equivalent expression

p-1 _-1 -_T
1 =A(P -1)AT

These values are used in Equation (3-8) to calculate the intensity

values for the measurement update.

3.7 Spatially Correlated Background Noise

The noise term, vkl(ti) , in Equation (3-9) contains spatially

correlated background noise [3]. The correlation distance is about two

pixels; the noise is modelled by non-zero circularly symmetric

correlation between each pixel and its two closest neighbors in all

directions.

The measurements are arrayed as a 64 element vector (64 pixels in

the tracking window). The additive noise term is modeled as

v(ti) - 'v'(ti)

where v'(t i ) is a vector of 64 independent, discrete-time zero-mean,

D white Gaussian noise processes with a variance of one. The strength of
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T
the resulting noise process, v(ti), is E(v(ti)v (t)} RS... This

J -1J

64-by-64 matri;. describes the spatial correlation between pixels and is

presented in detail by Harnly and Jensen [3] and Kozemchak [4). The

correlation terms not involving first or second neighbors of a given

pixel are essentially zero. The noise term added to the average

intensity value of each pixel, forms the simulation measurement data.

The adaptation for a wide-FOV is discussed in Section 4.4.

3.8 Summary

This chapter presents the truth model state propagation. Also

included are the transformation from the deterministic inertial target

trajectories to target motion on the FLIR image plane. Finally, the

measurement model is developed. The next chapter describes the linear

j i Kalman filter/correlator tracking algorithm and its use in a multiple

model filter.
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IV. TRACKING ALGORITHM

4.1 Introduction

The linear Kalman filter/correlator tracking algorithm that is

the elemental unit in the multiple model adaptive filter (MMAF) was

developed by Rogers [11] and Millner [7]. It uses a linear Kalnar.

filter to provide estimates of target position, velocity, and

acceleration and atmospheric disturbances. An enhanced correlation

algorithm, using the estimated target shape as a template, provides

the Kalman filter with pseudo-measurements. These pseudo-

measurements are offset distances from the center of the FLIR FOV,

modeled as a linear combination of the filter state variables. The

linear formulation allows many terms of the Kalman filter to be

precomputed, thus reducing on-line computational loading.

The equations necessary to propagate and update the state

estimates are presented in this chapter. Additionally, the

processing of the template and the correlation algorithm are

described. The linear Kalman filter/correlator is the basic element

in a bank of similar filters used by the NMAF, as discussed in

Chapter Ii. The chapter concludes with the specific variations in

each elemental filter used to define the MMAF.

4.2 State Space Model

The linear Kalman filter models target acceleration and

atmospheric jitter position as stationary, first-order Gauss-Markov
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processes. In the truth model, described in Chapter III, the

atmospheric jitter position was represented by a third order model;

however, the high-frequency double pole has little effect on the low

frequency characteristics of the jitter and is neglected in the

filter model [5].

The filter states are the target position (xDYD), velocity

(Vxv y), and acceleration (ax,a y), and litter position (xAYA), in

each FLIR image plane direction.

= [ YD V ax ay XA yA]T (4-i)

The state equations are

XD = vx

V a
x x

v a
y y

x DF )ax + WDx

a (-I/T )a ~y DF y + WDy

A  AF A + WAx

YA (-I/TAF)YA + WAy

where

TDF = correlation time for target acceleration

A = correlation time for atmospheric jitter

w w w = zero-mean white Gaussian noise processes whose

Ay strengths depend on tuning results

4-
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Identical, independent models are used to represent the effects in

the x- and y-directions of the FUR image plane.

The above relationships can be written as a state vector.

differential equation in standard form J
jF(t) = 4xF(t) + GF w (t) (4-2)

where

F The time invariant system plant matrix which is
:-F

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 o 0 0 0 1 0 0

F = 0 0 0 0 -l/T[ 0 0 0Z F DF
0 0 0 0 0 1 i 0ooa oa a -/f

0 0 0 0 0 0 0 1/A

G the time invariant system noise output matrix
EF

o 0 0 0:: 0 0 0 0'"."
0 0 0 0 klo 0 0 0

GF  = 0 0 0 0"

o 1 0 0
0 0 1 0
o 0 0 1.4

T
F(t) = (Wx, WDy, WAX, Wy], the noise vector of mutually

independent zero-mean white Gaussian noise
processes

"- f t~w(t+T)J (T
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2

0 22 /T 0 0
Q = DF DF 2

0 0 2a f0
AF AF

20o 0 2oa /T
AF AF

a 2 =target acceleration variance and ms valueDF

a2 = atmospheric jitter position offset variance and ms
AF value

The equivalent discrete time equation [5:173]j is

4F(ti+1) DFt i+1 - JI ( i +4- HD(t (4-3)

where

EFCti) -filter state vector at time,t

HFD(ti) - discrete-time zero-mean white Gaussian noise of
covariance I

The state transition matrix is [131:

1 0 t 0 JI 0 0 0
0 1 0 t 0 JL 0 0
0 0 1 0 J2 0 0 0
o 0 0 1 0 J2 0 0

(t t) 0 0 0 0 J3 0 0 0
F +1 0 0 0 0 0 J3 0 0

o 0 0 0 0 0 J4 0
o 0 0 0 0 0 0 J4 _

where

31 TD TDi F( 1exp(-At/ T))]
2= DF[lep(tTD)

J3 T exp(-ep(-t/ T DF)

J4 exp(-At/rAF

A t -I i
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The growth in uncertainty due to dynamic driving noise is [8]:

Q0 Q0 Q0 0 0
0. 0 Q 0 Qi 0 0

= Q1  0 Q3  0 Q0 0 0
13 3 0305
15 03  0 0 0 0

0 Q1 0 Q5 0 Q55  0 0
0 01 0 0 0 0 Q 0
0 0 0 0 0 0 0 Q

where

2 3 2 2 3
Q11  aDF [2 TDFAt /31 [2 T DF At - [4. T D At exp(-At/TDF)i

3 4 4
[2 TD At] -[TD exp(-2 At/TD) + TD

Q1 a DF 2tT DF At 2 + 2TDF 2At exp(-At/r DF) + [T DF 3

3 2 3
-[2 T DF exp(-At/T DFl- [2 T DF At] + [T DF exp(-2 At/T DF)]

- 2 + 2 2
Q1 [ F -2 T DF At exp(-At/t DF) [ T DF (T -[DF exp(-2At/TDF)l

2 2 2
= [2 TD At] T [3ID + [4 TD exp(-At/TD)

2
- TD exp(-2 At/T M1

FDF

2Q GD fTDI - [(2 TD (At/TD) -[r.ex( 2 t/F]

Q550DF2  - x(2ADF)

Q a 2(I exp(-2 At/T~)

Using the terms defined above, the state estimate and covariance

are propagated as follows:

Jt )= - 4(ti+ +

E(t )~d- 'V~itP(ttD (ti t +-%(45
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"x(t+) the state estimate after update at timeit

x(t i+ = the state estimate prior to update at timeti+1

P(t+) = the conditional covariance matrix after update at time t.
i 1-

P(t = the conditional covariance matrix prior to update at
time ti+ 1

4.3 Measurement Model

The Kalman filter update process uses pseudo-measurements

produced by an enhanced correlation algorithm. The template used by

the correlator is developed by preprocessing the target image. The

following subsections describe the target image processing, t~'e

correlation algorithm, and the Kalman filter update equations.

4.3.1 Two-Dimensional Fourier Transform. Many of the

operations required to perform target image estimation are more

easily accomplished in the Fourier domain. Additionally, Fourier

transforms are readily accomplished optically; optical implementation

of the tracking algorithm would greatly reduce the required computer

resources. The Fourier transform of a complex-valued function of two

independent variables, g(x,y), is a decomposition of g(x,y) into a

linear combination of functions of the form exp[j2r(f x + f y)]. Thex y

transform is defined as a double integral with respect to the spatial

variables x and y, where f and f are spatial frequencies [12).
x y

In this case, the discrete Fourier transform (DFT) is used

because the FLIR measurements are discrete values of average -

intensity. The DFT and its inverse are:
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N-I N-i
H(fx,fy) Z Z h(x,y) exp[-j2 ir(f x + f y)]

y' x0 y,0N-I N-I

2 NI N-i
h(x,y) = I/N E Z H(f ,fy) exp[+j2 Tr(f x + f y)]

f f =O

where

H(f fy) = transformed function in the spatial frequency
X ydomain

h(x,y) = function in the spatial domain

fx,fy = spatial frequencies

x,y = spatial variables

N dethe period of the assumed recurring sequence in . -.

both directions; thus the sequence of intensity
values is discretized into an N x N pixel array.

The 8-by-8 tracking window is padded with additional data to

form a 24-by-24 array for processing. The original array is padded

to reduce edge effects, aliasing, and 'leakage conditions. Data,

available from the larger field of FUR data, is used for padding

instead of zeros to prevent artificial edge effects [4:19]. The

"large" FOV data is padded with zero for reasons discussed in Section

4.4.

4.3.2 Fourier Transform Shifting Property. In order to average

the target image temporally, the intensity function in successive

frames of data must be centered in the current FOV. The intensity

function is centered on the filter's estimated target centroid

location using the shifting property of the Fourier transform [9].

46

'.'.%".'. . . . . . . . .. .. . .. ..-. ...-.. " ........ i. ......................-. .-....... -....... °.-. .-.-. ... .. .. ... . . . . ..•
-.'_J .., .t.', .,-._" .. . . • . .. .. _a . .#.,.." .' " . """" . """ •"." '"-" " . '- - ' .-. ,""" "", .""" . -"-. .'-. .". " '.•"



The Fourier transform shift theorem states that a linear phase

shift in the frequency domain corresponds to a translation in the

spatial domain. This phase shift can be thought of as a cylindrical

shift due to the assumed periodic nature of the sampled data. Thus,

using this property, the only difference between the centered image

and a translated image is a linear phase shift proportional to the

spatial displacement in the x- and y-directions. If F[g(xy)] =

G(f x,f y), then

F[g(x-a,y-b)] = G(f ,fy) exp[-j2 (f a + f b)]xy x y
where

a = spatial translation in the x-direction

b spatial translation in the y-direction

As mentioned earlier, the filter's estimate of the target centroid

location relative to the center of the FOV is used to determine the

required phase shift to center the image for interframe shooting.

4.3.3 Exponential Smoothing. The available target image

measurements are corrupted by FLIR and background noises. It is

assumed that, for the applicable sample rates, these noises tend to

vary more rapidly than the target intensity pattern from sample

period to sample period [111.

This assumption is exploited by use of an exponential smoothing

algorithm to time-average the data, thereby increasing the signal to

noise ratio. Exponential smoothing approximates a true finite memory

average without requiring the storage of a number of previous frames

of data [6:33]. The applicable equation is
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',.. i"j(t) = ayjt) +4 (l-tt4(t-l)

where

= current average value

y(t) = current data frame

~(t-1) f previous average data frame

aff smoothing constant, O< 1 1

The appropriate value of smoothing constant varies according to the

dynamics of the target image variations. A rapidly changing image

requires heavier weighting of more recent data and thus a higher

value of a ; likewise, slower variations require smaller values.

Based on previous studies, a is set at 0.1 for this effort [13].

The following steps summarize the template derivation process.

1. The Fourier transform of the raw FLIR data is calculated

2. The appropriate negating phase shift is applied to center the -.

image based on the estimated target centroid location

3. Temporal smoothing of the centered data is performed

4. The intensity shape function is evaluated at the estimated state

after the control application. For a single elemental filter

-Cx(t i+ I ) = (ti+l)

because, as stated in Section 1.3, control is applied so as to
zero the predicted dynamic states. Superscript c denotes after
application of the control. This is not the correct relation
for the MMAF, as explained in Section 4.4.

48



4.3.4 Fast Fourier Transform (FFT) Correlation Algorithm. The

correlator used in this effort is considered enhanced because it

compares the raw data with a template, rather than the previous frame

of data. The template is the estimated target intensity function

located at the best estimate of the centroid offset, x(t c ). The

FFT is used to perform the cross correlation by

F[R(x,y)] = G(fx f Y)

F[l(x,y) l - L(f fy)
- xy

[j(xy)* I(x,y)] G .(ff) L*(fx,fy) (4-6)
xy - ~ y

where

[.&(x,y) * 1(x,y)] = cross correlation of the two dimensional
spatial sequences &(x,y) and l(x,y)

L*(f ,fy) - complex conjugate of the Fourier transform
" of the sequence l(x,y)

The cross correlation, R(x,y), is obtained by taking the inverse

FFT, or IFFT, of Equation (4-6).

The resulting cross correlation is subjected to a thresholding

process to remove false peaks. Any element of R(x,y) that is less

than the preselected fraction of the maximum correlation is set to

zero. Following this, a centroid summation is used to locate the

center of mass. It is assumed that the centroid of the thresholded

correlation function is a good approximation of the peak location

(11:531; it also avoids the ambiguities that local peaks often cause

peak-finding algorithms. The calculated centroid calculation is the
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* - correlatorts estimate of the offset of the target from the center of

the data frame. These offsets are the "measurements" supplied to the

linear Kalman filter.

4.3.5 The Kalman Filter Update Equations. The linear Kalman

filter updates the state estimate based on the offset values from the

* correlator. The appropriate measurement equation is

where

Z(t i) the offset estimate in x- and y-coordinates
produced by the correlator, based on the f ilter
predicted centroid location due to dynamics and
atmospherics.

ADFx'ti)1Fxci 5  t Fvl~i1
LY(ti) + L (~ti LF(ti)

[i 00000101

0 1 0 0 0 0 0

YF(ti) =noise produced by the correlation algorithm
with statistics that were shown empirically to
be [11]

E(~(t)1 0

T
E(jt4 ( -Fti 6ij

where

= 00436 .00508]
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The standard Kalman filter update equations apply:

^+ (4-8)'.

4(t i ) x (t) + K(ti)[z(t i ) - (ti) (4-9)

+p ~=4() -K(t. H 4 t)(4-10)

where all the terms have been previously defined.

4.4 Multiple Model Implementation

The theoretical basis for the multiple model adaptive filter is

developed in Chapter II; this section concentrates on the variations

in the elemental linear Kalman filter/correlators included in the

MMAF bank of estimators. The single filter tracking algorithm

discussed so far can potentially handle a target maneuvering at a

level between ±20 g's, with tuning appropriate to that maneuver. By

2
changing the values of TDF and aDF used to model acceleration in the

filter model, each filter in the bank can be tuned for different

tracking scenarios. In order to establish a filter (or more than

one) that can maintain lock during exceptionally harsh maneuvers, a

larger tracking window is incorporated along with appropriate tuning.

The larger 24-by-24 FOV is still processed as an 8-by-8 data array in

an effort to limit computational loading. However, each "large"

pixel is 60 pirads-by-60 prads instead of 20 1rads on a side. This is

accomplished by making each scalar intensity data value the average

of 3-by-3 pixel array. The same FOV center is maintained for both

the narrow and wide tracking windows.
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The larger FOV requires additional modifications to the basic

algorithm. The measurement noise for the large FOV is assumed to be

spatially uncorrelated because the distance between "large" pixel

centers is greater than the two "small" pixels that compose the

spatial correlation distance. Also, the larger FOV makes it

reasonable to assume the target intensity value at the edge of the

tracking window is essentially zero; this makes it appropriate to pad

the data array with zeros instead of noisy data, when estimating the

target intensity function [13:IV-9]. Since the correlator output is

in terms of pixels, "large" or "small", the pseudo-measurements for

the large FOV case are multiplied by three, allowing the filter

portion of the algorithm to remain unaffected by the different size

tracking windows.

This effort evaluates three MrMA~s; the first has two filters in

the bank and the other two MMAFs add a third filter; one of these is

a Bayesian MMAF and the other is a MAP MMAF formulation. The first

elemental filter for each MMAF is tuned for a benign trajectory,

using a narrow FOV for tracking accuracy. The other end of the

expected maneuver range is covered by a wide-FOV filter tuned to

track a 20 g target. In order to improve accuracy when the target

motion is not well modelled by the first two filters, the small FOV

third filter is tuned for 10 g maneuvers. The tuning results are

presented in Table IV-i, below.
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Table iV-I. Filter Tuning Values

T (sc) 2 (pixels2/sec4

i ~DF ( s c  DF

;. _ MMAF 1 Filter 1 3.5 1000 i

Filter 2 1.5 2000

MMAF 2 Filter 1 1.5 1000
Filter 2 1.5 1500
Filter 3 1.5 2000

2
The high value of aDF for filter I in the first MMAF is due to the

coarse discretization of the parameter space and is required to

prevent MMAF 1 from diverging when tracking targets perform maneuvers

at 20 g's.

Severe maneuvers can cause significant differences between the

position estimates of the MiF- and the small FOV filters. These

differences may become large enough to cause a complete cycle of the

cylindrical shift, leading to divergence of the small FOV filter.

Due to the artificial lower bounding, the Bayesian MMAF estimate

continues to include these value, ultimately leading to divergence of

the MMAF. Additionally, if a small FOV filter is allowed to diverge

during harsh target maneuvering, it will not be capable of responding

swiftly if the target motion again matches its internal dynamics

model at a later time. To avoid this problem, a reacquisition

process is initiated whenever the shift of the narrow tracking window

exceeds a magnitude of 3.0 pixels. The divergent filter states are

reset to a combination of the nondivergent filters' states or, for

the MAP estimator, the MMAF state estimate. Likewise, for the
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L. .

Bayesian MMAF, the covariance matrix is reset to the combined

covariance values of the nondivergent elements; the MAP MMAF uses the -

current multiple model values for covariance. The conditional

probabilities are left at the current values.

Earlier, it was pointed out that the estimated target intensity

function is evaluated at the predicted target centroid position,

after control application, to form the correlation template. With

the MMAF, the control no longer zeros out the predicted offset of

each elemental filter due to dynamics; instead the FLIR is reoriented

to the predicted location of the target centroid due to target

dynamics, based on the MMAF estimate. The intensity function is now

evaluated at

E DFti~ +AFk tid - DMMF(ti+i)

th i th
for the k filter, where XDFk (t i+) and AFk(ti+l) are the k

filter's target dynamic state and atmospheric jitter state estimates

(predictions), respectively, and xMF(ti+1) is the MMAF dynamics

state estimate (prediction) based on the Bayesian or MAP criteria

developed in Chapter II.

4.5 Summary

This chapter described the details of a tracking algorithm based

on the multiple model adaptive filter developed in Chapter II. The

first section presented the propagation equations for the basic

linear Kalman filter. Next, the intensity function estimation
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process used to develop the template for the enhanced correlator was

outlined. The update equations completed the description of the

linear Kalman filter/correlator which forms the basic element for the

multiple model filter bank. The final section detailed the

variations of this basic algorithm as implemented in the three MMAFs.
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V. ALGORITHM TEST SET-UP

5.1 Introduction

This chapter presents the evaluation methods for the three

tracking algorithms investigated during the course of this research.

The first section covers the derivation of tracker statistics. The

format of the performance plots, which are the major evaluation tool,

is discussed next; followed by an outline of the parameter values

used in the various test cases. The final section summarizes the

three filters and defines the test cases used to generate the tracker

performance statistics.

5.2 Tracker Statistics

Monte Carlo analysis techniques were employed to generate

tracker performance statistics. Earlier studies established that ten

runs allow sufficient convergence of sample error statistics to the

true error statistics that would be observed with an infinite number

of runs [7,13].

Tracking performance is determined by a filter's error in

estimating the target's true position due to dynamics. Consistently

low mean errors, along with low error variances, demonstrate the

filter's ability -to track the target through a wide range of

maneuvers.

The sample mean errors of the filter position estimates are

calculated using
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0 - . , .P 1

N

x n= [Xdn(t i )  Xdfn(til

N
(11) r e (t)

xdn i
n= 1

where -" "

-fxd(t ) sample .,rear% error (averaged over N simulations)
xd.i in x-dynamics position at time t.

2..

Xdn (t )  truth model x-dynamics value at time ti for run n

x dfn(ti) multiple model filter estimated x-dynamics value

at time t. for run n

ed(ti) = number of Monte Carlo runs

The sample variance of the error is calculated by

N
a2 2 2C2(t) [1/(N-1)] r exd2ti) - (N/(N-1)] E (t (5-2)
xd i xdn xd i' -)

where the terms are defined above. The same equations also apply to

calculation involving the y-dynamics position. The errors are

measured in FUR image plane coordinates and represent offsets from

the center of the sensor FOV. Error is expressed in units of pixels; ...

each pixel is 20 Prads on a side.

Mean error and standard deviation are also time averaged in

order to provide a scalar figure of merit for tracking accuracy.

This temporal averaging occurs for a short period after transients

have died out until just before the first maneuver, and from just

after maneuver transients have declined until a time close to the end

of the run. Time averaging allows presentation of data in a compact

tabular form; however, these figures should be viewed in context.
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Misleading figures of merit could occur; for example, if the error is

ramping from positive to negative, then the average error could be

zero while the actual error varies over a large range of values.

Evaluation of the plots of mean error versus time provide a more

accurate and complete representation of tracker performance.

5.3 Performance Plot Format

Performance plots are generated in order to evaluate fully the

tracking algorithm's accuracy. These plots are of x- and y-dynamics

estimate mean errors and mean error, plus and minus one standard

deviation of the errors. The position estimate errors in pixels are

plotted against time in seconds. Figure 5-1 is the y-position error

before update and Figure 5-2 is the error after update. The maneuver

takes place at t = 2.0 seconds; the plots show an increase in error

followed by a recovery to approximately zero-mean tracking error.

Notice that the maximum mean error af ter update is less than before

update, properly showing that the update process reduces tracking

error. Figure 5-3 compares the actual y-position rms error with the

filter's estimate of its own rms error; this is a good indication of

how well the filter is tuned. In this case, the maneuver initiation

causes a short period of increased error; the filter responds

appropriately by also increasing its computed rms error. This plot

format is used to tune each elemental filter. In conjunction with

the time averaged statistics, the mean ±1 standard deviation error

time histories provide the means to evaluate the tracking algorithm's

level of performance.
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5.4 Parameter Values

The actual parameter values used in the equations developed in

earlier chapters can significantly affect tracker performance. In

all cases, the values used for this research are selected to produce

the most accurate estimates of target position. Many of the values

are the result of previous investigations [8,13]; however, some are

due to the tuning work accomplished during this effort. Unless so

stated, the following discussion applies equally to all three

filters.

5.4.1 Truth Model Parameters. The initial conditions for all

of the trajectories described in Section 3.2 are identical for every

simulation:

Inertial position: x - 5000 m
y 500 m
z = 20000 m

Inertial velocity: x = -1000 m/s
y 0
Z i 0

Inertial acceleration: x 0
y= 0

0 0

The maximum intensity of each hot spot, I of Equation (3-8) is 20.

max

The variance of each vkl(ti) in Equation (3-9), accounting for both

2
FLIR and background noises, is one (intensity unit)2 . This leads to

a signal-to-noise ratio of 20, which is representative of many

tracking environments [3]. Atmospheric jitter variance, the variance

2
of xA in the diagram below Equation (3-1), is 0.2 (pixels) . Based
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2
on a glint dispersion parameter of 2.0 (pixels) the aspect ratio,

defined in Section 3.6, is one; i.e., the eigenvalues of P in

Equation (3-8) are both two. These parameters applied to the model

developed in Chapter III specify the simulation environment used to

test the tracking algorithms.

5.4.2 Filter Parameter Values. For the MMAFs, each element

filter was tuned to produce the best results at its individual design

point without degrading the MMAF performance. In the two-element

MMAF, the small FOV filter required a high dynamics noise variance to

prevent MMAF divergence in the 20g scenarios and the large FOV filter

is likewise detuned to maintain lock on a constant velocity target.

However, the three-element MMAF has each filter tuned closer to the

optimum values for the type of trajectory modeled by its internal

dynamics model. The resulting tuning values are presented in Table

Iv-1.

For all the filters, an atmospheric correlation time (TA) of

0.07 seconds is assumed. The filter atmospheric noise variance is

2
0.2 (pixels) like the truth model.

The probability lower bound is set at 0.001. The initial

probability of filter one is 0.99 for the two element MHAF and 0.98

for the three-element MMAF. This high value indicates confidence

that the target is essentially at constant velocity and not

performing evasive maneuvers.
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5.5 Test Scenario Descriptions

Although earlier chapters discuss every aspect of the tracking

algorithms being investigated and the target test trajectories, a

brief description of each will enhance understanding of the .

performance analysis contained in the next chapter.

5.5.1 Multiple Model Adaptive Filters. Three different

tracking algorithms are being evaluated, the two-element baseline

MMAF, the three-element Bayesian MMAF, and the three-element MAP

MMAF. The baseline MMAF is taken directly from Suizu's work [13]

based on the Millner algorithm [8] for the elemental filters. In

addition to providing a basis for evaluating the three-element

filters, the baseline MMAF is exercised for eight seconds (rather

than five seconds) and operated at 100 Hz. These variations

investigate crossover effects and the performance benefit of

increased sample rate. The latter two MMAFs contain the same

elemental filters; however, they create the MMAF estimate

differently. The Bayesian MMAF produces the weighted average of the

elemental filter's estimates, using the computed conditional

probabilities as developed in Chapter II. Also using the conditional

probabilities, the MAP MMAF chooses the elemental estimate with the

highest probability of being correct. The performance of these three

filters is evaluated over a number of test cases.

5.5.2 Test Cases. Each of the MMAFs are exercised against the

same combination of trajectories at different acceleration levels, as

shown in Table 5.1 below.
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Table 5.1. Test Cases

I

BASELINE BAYESIAN MAP

Traji - straight line X X X

Traj 2 pull-up

g level: 2 X X X
10 X X X
20 X X X

Traj 3 - pull-up/
constant velocity

climb

g level: 2 X X X
10 X X X
20 X X X

Trajectory four is not used because it is designed to investigate

target image estimation rather than tracking accuracy. The target

remains in approximately the same position in the FOV, changing only

its range and orientation and does not stress the algorithm's ability

to estimate target position. Additionally, each elemental filter is

tested against trajectory two at the g level for which it is tuned.

The elemental filter's performance with optimum tuning should

represent the "best" tracking performance in that test case; because

of purposeful detuning of various degrees, the elemental filter's

performance may not be the "best". However, the comparison between

"" the elemental filter and the MMAF gives some idea of the effect the

multiple model approach has on tracking performance.

A test case designation code is useful to identify the different

combinations of filters, trajectories, and g levels. The following

code is used to identify the test cases in tables and plots.
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T2 G20 F2- BAY

p1 2 3 4

1. Trajectory number

2. Maneuver g level (2,10,20)

3. Filter Type
MM - multiple modelFI1

F2I element filters
• F3

4. Filter variation

BAY - Bayesian MMAF
MAP - MAP IMAF
BASE - Baseline MMAF
XT - Extended time, baseline MMAF

100HZ - lOOHz sample rate, baseline MMAF

Under this scheme, the example code (T2G20F2-BAY) indicates the

second elemental filter in the Bayesian MMAF operating in a 20g,

trajectory two.

5.6 Summary

The evaluation methods presented in this chapter are used to

describe the results obtained from operating the three MMAFs under

various conditions. These conditions are described by the selected

target trajectories and parameter values for the truth model and the

filters. Based on the statistics and plot formats discussed in this

chapter, the next chapter investigates the performance of the

different MMAF formulations.
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VI. PERFORMANCE ANALYSIS

6.1 Introduction

The performance analysis of the three MMAFs is discussed in this

chapter. Each filter is evaluated separately, based on both its

temporal averages and error statistics times histories. The baseline

MMAF is presented first, along with the extended simulation (8 sec)

and the 100 Hz sample rate version of this filter. The addition of a

third elemental filter is investigated next by analyzing the Bayesian

MMAF. Finally, the MAP MMAF results are evaluated. The concluding

section compares and contrasts the results of all three MMAFs.

6.2 The Baseline MMAF

As discussed in Section 4.4, the narrow-FOV elemental filter

requires a high level of dynamics driving noise to prevent total loss

of target at 20 g's by the baseline MMAF. For all trajectories at

low accelerations (G - 2 g's), the conditional probabilities maintain

a heavy weight (0.99+) on filter 1. This indicates that the actual

residuals remain well matched to the internally computed (H P HT + R)

of that elemental filter. The high level of acceleration noise on

the dynamic states allows this model to track a range of lower .

acceleration values rather than just zero acceleration.

In trajectory two, significant variations of the conditional

probabilities occur at 10 and 20 g's. At 10 g's, the shift of

weighting to filter 2 starts within 0.3 seconds after the maneuver is
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initiated, and after two thirds of a second the weighting is heavily

on filter 2. The MMAF responds slightly faster at 20 g's. No

reacquisitions occur at 10 g's; however, the 20 g maneuver averages

two reacquisitions per run for the narrow FOV filter. This is

indicative of the narrow FOV filter having severe difficulty in

maintaining lock when a 20 g step acceleration is introduced. Use of

a more realistic acceleration model might remove the reacquisition

requirement altogether. The conditional probabilities, following the 3

maneuver, tend to oscillate in the 0.4 to 0.5 range and sometimes

reach as high as 0.7. This is due to the purposeful detuning of the

elemental filters to avoid total loss of the target at 20 g's; p

neither elemental filter produces residuals that are significantly

large enough to push the weighting one way or the other. Up until

the 3.5 second point in the simulation, trajectory three behavior is

the same; however, at this point the maneuver change in this

trajectory causes the wide FOV to be weighted much more heavily than

the narrow FOV. Once again, as the target trajectory remains

consistent after this step change in acceleration occurs, the MMAF

begins to increase the weighting on filter 1.

The plots of mean error ± one standard deviation in the

x-position, for trajectory two (Appendix A), do not show significant

changes due to the maneuver, because the actual trajectory change in

the x-direction is relatively small. The x-position mean error

begins a positive ramp after the maneuver at 2.0 seconds; the maximum

rate is 0.5 pixels/second during the 20 g maneuver. This ramping can

possibly be attributed to the simplifying assumptions incorporated in
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the models. First, each elemental filter assumes a non-rotating

inertial reference frame when, in fact, the tracker-based coordinate

frame does rotate. This model simplification can be mitigated by the

addition of pseudo-noise to the position and velocity state

estimates. Second, the true position is the location of the target

center of mass, and the filter is tracking the target radiation

centroid; usually the two are not coincident. A definitive

explanation of the ramping has not yet been established, and this

warrants further investigation.

Meanwhile, the y-position has a sharp increase in error

following the maneuver, but quickly recovers (0.625 seconds) to zero-

mean tracking error. The one sigma errors are slightly higher after

the maneuver due to the increased emphasis on filter 2. The time

averaged statistics in Table 6-i, show this and also, the tracking

error is reduced following updates. Additionally, Table 6-1

indicates the effects of multiple model weighting on filter

performance. Comparing the MMAF and filter 2 in a 20 g trajectory

two, the single filter has consistently better performance. The same

type of comparison for trajectory one indicates that filter 1 does

not perform noticeably different from the MMAF, probably due to the

consistently high weighting on filter I in the MMAF. Although it is

expected that the tracking error will increase slightly for higher g

levels, one notes that the MMAF actually performs worse in the well-

modeled 20 g maneuver than in the 10 g maneuver that is not

explicitly modeled by one of the elemental filters. This is further
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evidence of the purposeful detuning of the elemental filters which

leads to the oscillation in weighting of the two elemental f ilters

discussed earlier in this section.

Table 6-1. Time Averaged Statistics (mean I a)
for the Baseline NMAF (3.5 - 5.0 sec)

x(-) x(+) y(-) (y+)
CASE (pixels) (pixels) (pixels) (pixels)

T1MM-BASE 232 ±.424 -.219 t.359 -.000 t.394 -.003 t.345
(TlFi-BASE) .216 ±.426 .203 ±.377 -.009 t.394 -.011 t.345

T2G2MM-BASE .214 ±.424 .198 ±.369 -.324 ±.404 -.008 ±.355

T2G10NM-BASE .465 ±.431 .389 ±.374 -.120 ±.451 .008 ±.402

T2G20MM-BASE 1.29 ±.444 1.04 ±.388 -.179 ±.467 .044 ±.422

(T2G20F2-BASE) .216 ±.420 .203 ±.365 -.009 ±.394 -.011 ±.345

T3G2MM-BASE .127 ±.481 .158 ±.406 .181 ±.405 .131 ±.358%

T3G1OMM-BASE .119 ±.516 .157 ±.429 .553 ±.506 .420 ±.441

T3G20M14-BASE .305 ±.501 .376 ±.415 1.07 ±.514 .816 ±.441

The error statistics time history plots for x-position on

trajectory three (Appendix A) are significantly different from

trajectory two plots. At approximately 1.5 second into the

simulation, the mean error experiences a step change, causing a bias

until the maneuver at 3.5 seconds. The bias value is approximately

1.5 pixels for all acceleration levels; rms error levels remain about
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the same. Returning to approximately zero-mean error at 3.5 seconds,

the x-position plot demonstrates the characteristic ramping mean

error as seen in trajectory two. There are no known differences

between trajectories two and three in the first 3.5 seconds of the

simulation to account for this unexpected behavior; it is supposed

that the trajectory generation in the truth model may have an

undiscovered variation.

Tracking performance in the y-direction is considerably better

than the x-direction. This result is highly encouraging because

tracking in the y-direction is significantly more difficult than in

the x-direction; target maneuvers show the greatest change in

y-direction motion. Furthermore, errors in position estimation along

the length of the target are not as serious as errors orthogonal to

the target longitudinal axis. The maneuver changes result in a

maximum mean excursion of -5.25 pixels as 2.0 seconds, followed by a

maximum of 2.0 pixels after the maneuver at 3.5 seconds. The filter

recovers in approximately 0.75 seconds following the first maneuver;

the response to the second change is somewhat slower, possibly due to

the higher weighting of the wide FOV elemental filter. The time

averages in Table 6-1 are artificially high because the averaging is

performed from the 3.5 second maneuver point until simulation end;

the plots also show a slow return to zero-mean tracking error.

6.2.1 Extended Time Baseline MMAF. The baseline MMAF, as

implemented by Suizu [13], demonstrated a tendency to increase mean

tracking error at approximately 5.0 seconds. This time represents

the minimum range/maximum cross rate condition for the simulation; to
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investigate tracking behavior beyond this condition, the simulation

time was extended to 8.0 seconds. In most of the test cases, the

extended runs demonstrated the same behavior as the baseline NMAF

with a few notable exceptions.

The conditional probability behavior is virtually identical to

the baseline MMAF for maneuvers of 1 - 10 g's. However, despite

similar trends in system identification (e.g., appropriate heavy Pk

values on the best matched filter), the extended runs show the MMAF

losing lock in 20 g maneuvers. Unlike the same MMAF in a 5.0 second

run, loss of lock occurs within 0.5 seconds of the maneuver at 2.0

seconds. This failure to maintain lock is attributed to a different

noise time history caused by additional calls to the random number

generator used to create the additive noise values for the additional

frames of data in the extended runs. This loss of lock indicates

that the tuning values are very marginal in the baseline MMAF.

The x-position mean - one standard deviation erroi plots

(Appendix D) for trajectory three differ significantly from the

baseline MMAF plots. In this case, the unexplained step bias at 1.5

seconds is not observed. When the filter maintains lock, the

y-position plots demonstrate recovery at the same rate as the

baseline MMAF. These trends are further illustrated by the time

average statistics in Table 6-2. As seen in the table, these

statistics show slightly better mean tracking errors than the

baseline, however, the values are averaged later in the simulation

after the I~ter has more time to recover from maneuver transients.
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Table 6-2. Time Averaged Statistics (mean t 1d)
for the Extended Runs (6 - 8 sec)

x(-) x(+) y(-) (y+)".,
CASE (pixels) (pxels) (pixels) (pixels)a

TIMM-XT .405 ±.436 .373 ±-.385 .005 ±.426 .001 ±-.378 --

T2G2MM-XT .410 ±_.433 .375 -±.385 -.020 _±.427 -.003 +-.377..t

T2GIOMM-XT .800 +-.459 .685 ±.412 .042 ±_.424 .115 ±-.373

r3G2MM-XT .449 ±.432 .418 ±-.382 .064 ±-.418 .060 ±-.369
r3GIOMM-XT .397 ±-.429 .367 ±-.377 .143 ±.419 .132 ±-.370 •

6.2.2 Baseline MMAF -100 Hz Sample Rate. Optical implementa-

tion of the tracking algorithm,* as proposed by Roemer [10] and Rogers

[11], allows data to be processed at the increased sample rate of 100

Hz. All other aspects remaining constant, additional updates should

greatly improve tracking accuracy. In actuality, increasing the

baseline 30 Hz sample rate to 100 Hz did not improve tracking

performance. Under this condition, the MMAF diverged in every case

and failed to maintain lock at higher (10 - 20 g's) acceleration

levels.* This type of behavior may indicate problems in the

measurement model. The increase in sample rate reduces the smoothing

effect of the propagation portion of the algorithm, allowing

mismodeled measurement data to have a more severe effect on the state

estimate. A poor measurement model could lead the filter into

erroneous evaluations of the incoming data causing poor tracking

performance. Due to limitations on time and computer resources, this

* Subsequent investigation located a coding error. See Appendix E

for updated results.
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difficulty was not fully investigated; however, the plots which did

not demonstrate loss of lock are included in Appendix E for

completeness.

6.3 Bayesian M!AF

The Bayesian MMAF consists of the three elemental filters

described in Section 4.4. This filter is tested against the same

trajectories as the baseline MMAF. In all of the trajectories at low

accelerations (1 - 2 g's), the rate of change of the conditional

probabilities, following a maneuver, are very similar to the baseline

MMAF; at the higher accelerations, the trends differ markedly. At 10

g's in trajectory two, following the maneuver, filter 2 is weighted

more heavily than the other two filters, but within I second filter i

is once again strongly weighted. In the 20 g maneuver, the weighting

shifts to filter 3 for a few frames and then to filter 2, followed

immediately by the narrow FOV filters (I and 3) losing lock. After

reacquisition, the conditional probability of filter 2 is very high

(0.9+) and remains so until 1.3 seconds when filter 1 rapidly

dominates the weighted average. In each case, less of the

oscillations in probabilities previously observed in the baseline

MMAF occurred. As observed in the baseline MMAF, when the filter

obtains good acceleration estimates, the weighting returns to filter

1. Trajectory three also has the same conditional probability trends

as observed in the baseline cases. However, following the maneuver

change at 3.5 seconds, the filter is much slower in returning

emphasis to filter 1; filter l's probability, in a 10 g acceleration,
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only reaches 0.68 as compared to 0.9+ in the baseline case, and the

20 case fails to maintain lock. Loss of lock occurs very quickly

following the maneuver at 2.0 seconds; this is an additional

unidentified peculiarity in trajectory three (in that it should yield-2

the same characteristics as trajectory two until the 3.5 second

point).

Tracking performance in the x-direction remains fairly

consistent, including the unexplained bias observed only in

trajectory three (Appendix B). The time averaged statistics in Table

6-3 show that the mean error tends to increase at higher

accelerations, as does the error standard deviation. In most cases,

the elemental filters, operating at the conditions for which they are

specifically tuned, demonstrate lower mean errors and higher standard

deviations than the MMAF in the same test case. This results from

the MMAF mean value not being corrupted by the inclusion of means

from mismatched filters; similarly, the covariance values are higher

because the values in filters 2 and 3 are not reduced by being

combined with the lower value used in filter 1.

Plots of error statistics time history demonstrate very good

performance in the y-direction (Appendix B). In every case the MMAF

recovers within 0.75 seconds following a maneuver; this recovery time

is the same for the elemental filters. The elemental filter that is

best tuned to the given maneuver (filter 2 or 3), alone, demonstrates

lower maximum excursions following a maneuver than the MMAF.
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- -. Table 6-3. Time Averaged Statistics (mean t 1a)

for the Bayesian MMAF (3.5 - 5.0 seconds)

x(- x(+) y(-) (y+)
CASE (pixels) (pixels) (pixels) (pixels)

TIMM-BAY .228 ±.422 .215 t.367 .026 t.419 .025 ±.372
(TIFI-BAY) .216 ±.420 .203 ±.365 .009 ±.394 -.012 ±.345

T2G2MM-BAY .220 ±.429 .205 ±.374 -.012 ±.427 .013 ±.378

T2GIOMM-BAY .450 ±.456 .376 ±.400 -.239 ±.458 -.101 ±.406
(T2G1OF3-BAY) .388 ±.482 .321 ±.411 -.420 ±.429 -.245 ±.368

T2G2OMM-BAY 1.13 ±.465 1.10 ±.411 -.271 ±.481 -.101 ±.44!

(TG2OF2-BAY) 1.02 ±.482 .793 ±.414 .062 ±.450 .331 ±.378

T3G2MM-BAY .132 ±.507 .170 ±.422 .130 ±.434 .090 ±.376

T3G1OMM-BAY .088 ±.511 .129 ±.427 .367 1.440 .226 ±.340

T3G20MM-BAY lost lock on target

However, these two elemental filters demonstrate non-zero mean trends

following recovery; filter 2 has a positively ramping bias and filter

3 never quite returns to zero-mean tracking error: it maintains a

small negative bias until the end of the simulation. The MMAF does

recover to zero-mean tracking; although in trajectory three at 20

g's, it recovers more slowly than at 10 g's, probably due to the

longer emphasis on the wide FOV filter. Generally, the Bayesian MMAF

outperforms the baseline MMAF; this is discussed in more detail in

Section 6.5
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*6.4 MAP MMAF

This variation of the MMAF uses the output of the single "best"

elemental filter to form the MMAF estimate. The selection is made

based on the calculated conditional probabilities. In the lower

acceleration cases, the MAP algorithm selects filter 1 exclusively

and the actual calculated probabilities for filter 1 are higher than

those observed for filter 1 in the Bayesian MMAF. Possibly,

reacquisition, as discussed in Section 4.4, allows the diverging

filters to be inappropriately weighted for a few frames, thus leading

to different conditional probability weights subsequently. Following

the 10 g maneuver in trajectory two, filter 2 is selected within 0.3

seconds; for the next second, the selection rotates through 3, 2, 1,

and 3 in order. After 4.16 seconds, filter 1 is used for the

remainder of the simulation. Similar behavior, about 2 sample

periods sooner, is observed at 20 g's; the narrow FOV filters undergo

reacquisition at about 2.5 seconds. Trajectory three, at both 10 and

20 g's, demonstrates the same trends until 3.5 seconds when the

second maneuver change occurs. Following the return to constant

velocity flight, the MAP MMAF begins to shift between filters 2 and

3. Filter I is selected again by 4.67 seconds, at 10 g's; however,

at 20 g's, filters 2 and 3 continue to alternate until the end of the

simulation. Thus, as observed previously, changes in acceleration

trigger a shift to filters 2 and 3, while filter 1 is selected when a

good estimate of constant acceleration i:; obtained [1].
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Tracking performance in the x-direction is consistent with that

in the other two MMAFs (Appendix C). Generally, as shown in Table

6-4, the MAP MMAF has lower mean errors and higher error standard

deviations than the Bayesian MMAF. The ramp bias observed in both

the baseline and the Bayesian MMAFs still occurs with approximately

the same magnitude. Additionally, the unresolved step bias observed

in trajectory three still remains; however, the bias magnitude is

slightly higher, 1.6 and 1.9 pixels for 10 and 20 g's, respectively,

as compared to 1.5 pixels in the first two MMAFs. The exclusive use

of filter 1 data seems to make the output more sensitive to this

phenomena.

Table 6-4. Time Averaged Statistics (mean t 1a)
0" for the MAP MMAF (3.5 - 5 sec)

'.x(-) x(+) y(-) (y+) ,--

CASE (pixels) (pixels) (pixels) (pixels)

TIMM-MAP .216 t.420 .203 t.366 .005 t.416 .003 t.350

T2G2MM-MAP .216 t.428 .198 t.375 -.014 ±.432 .010 t.387

T2G1OMM-MAP .453 ±.446 .377 t.391 -.260 ±.528 -.129 t.481
T2G10F3-MAP* .400 ±.468 .333 t.468 -.311 t.608 -. 126 t.547

T2G20MM-MAP 1.26 t.461 1.00 ±.412 -.344 ±.478 -.129 ±.454

T3G2MM-MAP .109 ±.520 .149 ±.431 .136 ±.443 .095 ±.381-

T3G1OMM-MAP .075 ±.512 .116 ±.427 .359 ±.454 .219 ±.383

T3G20MM-MAP .159 ±.501 .247 ±.416 .991 ±.525 .697 ±.446

The dynamics variances on target acceleraticn for he r~tuned

filters 1, 2, and 3 are 300, 1900, and 2000 pixels /sec
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As might be expected, the y-position error statistics plots

(Appendix C) demonstrate the effects of MAP estimation more clearly.

Low acceleration (0 - 2 g's) maneuvers are tracked entirely by filter

1. The maximum excursion of mean error observed is 0.5 pixels and

the error standard deviation remains under 0.5 pixels. In this case,

accuracy has been sacrificed by the purposeful detuning of filter 1,

required for the MMAF to maintain lock in 20 g maneuvers. Trajectory

two shows a slight tendency toward a negative bias following recovery

from the maneuver. At 10 and 20 g's, the maximum excursions are -1.6

and -4.0 pixels and the recover time is 0.68 and 0.75 seconds,

respectively. The increased standard deviation due to the selection

of filter 2 or 3, following the maneuver, is very noticeable in the

10 g case and less so, due to scaling, in the 20 g case. In an

effort to evaluate the effect of detuning, the elemental filters are

tuned more tightly, using the values noted in Table 6-4 rather than

those established in Section 4.4. The MAP MMAF is tested at 10 g's

(loss of lock by the MMAF at 20 g's is the only reason for detuning

the elemental filters); the MMAF with this tuning has a slightly

smaller maximum excursion (-1.5 pixels) and quicker recovery (0.625

seconds), but it shows a greater tendency towards a negative bias

following recovery (Appendix C). The time averaged statistics, in

Table 6-4, indicate that most of the improvement is in the

x-direction tracking rather than the y-direction which, as discussed

earlier, is not the difficult direction to track. In this light, the

current tuning values appear more favorable than might be

anticipated. Trajectory three performance also demonstrates these
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-trends. The slightly higher standard deviations following maneuvers

are observable but not obvious in the plots. The MAP estimates are

not significantly lower in this case than the other tow filters; this

appears to be a consequence of the cycling between filters which

leads to an effective averaging of the elemental filter's outputs.

6.5 Comparison of the Three MMAFs

A comparison of the three different MMAFs (baseline, Bayesian,

and MAP) allows one to evaluate the effects of the third filter in

the bank and the MAP estimation approach versus the Bayesian

approach. Several aspects of each filter are used to judge relative

performance. The maximum excursion of the mean error following a

maneuver indicates how well the MMAFs handle changing target motion.

Additionally, the time to recover to zero mean tracking error after

the maneuver is another measure of performance in this category.

Observation of the time averaged statistics yields an idea of each

MMAF's accuracy in steady state.

Clearly, as seen in Table 6-5, the addition of the third filter

to the bank reduces the maximum mean error following the maneuvers at

2.0 and 3.5 seconds. The differences between the Bayesian and MAP

MMAFs do not indicate a significant difference between the two

approaches; however, the MAP MMAF may handle 20 g maneuvers better.

The evidence is inconclusive due to the difficulties with trajectory

three discussed earlier in this chapter.

80

.... -
.... . . . . . . . .

. .. . . . .. . . . .. . . . .. . . . .. . . . .. . ..--



Table 6-5. Maximum Mean Error Excursion Following

Maneuvers at 2.0 and 3.5 Seconds

Trajectory Two (2.0 sec) Trajectory Three (2.0/3/5 sec)

10 g's 20 g's l0 g's 20 g's
(pixels) (pixels) (pixels) (pixels)

Baseline -2.38 -6.5 -2.38/1.25 -6.5/2.0

Bayesian -1.4 -4.13 -1.51/1.18 lost lock

MAP -1.6 -4.00 -1.51/1.11 -5.38/2.5

Response time after a maneuver (Table 6-6) doesn't vary

significantly between the three MMAFs. Immediately following a

maneuver, when the conditional probabilities shift, it takes about

the same number of sample periods to cause a change of filter in the

MAP MMAF as to achieve a 0.9+ weighting of the same filter in the

Bayesian MMAF.

Table 6-6. Recovery Time After Maneuvers at
2.0 and 3.5 Seconds

Trajectory Two (2.0 sec) Trajectory Three (2.0/3/5 sec) .'.

10 g's 20 g's 10 g's 20 g's
(sec) (sec) (sec) (sec)

Baseline .625 .75 .688/ * .75/ *

Bayesian .75 .75 .688/.75 lost lock

MAP .688 .75 .688/.688 .813/.938

* Never reached zero-mean tracking error in the 5.0 sec
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The time averaged statistics shown in Table 6-7 do not indicates

any overwhelming trends. There is no strong evidence that the

addition of the third filter improves steady state tracking error in

trajectory two; however, trajectory three, y-direction, demonstrates

reduced mean errors except when the Bayesian MMAF loses lock. The

MAP MMAF does demonstrate generally lower means and higher standard

deviations than the Bayesian MMAF, but not significantly. Notice

that the standard deviations remain consistently between about 0.35

and 0.45; this is very important for insuring that the laser energy

"paints" a very small area of the target.

Table 6-7. Time Averaged Statistics (mean ± )

After Update

Trajectory Two Trajectory Three

x(+) y(+) x(+) y(+)
(pixels) (pixels) (pixels) (pixels)

2 g's

Baseline .198 ±.369 .008 ±.355 .158 ±.406 .131 ±.358
Bayesian .205 ±.374 .013 ±.378 .170 ±.422 .090 ±.376
MAP .198 ±.375 .010 ±.387 .149 ±.431 .095 ±.381

10 g's

Baseline .389 ±.374 .008 ±.422 .157 ±.429 .420 ±.441
Bayesian -.376 ±.400 -.101 ±.406 .129 ±.427 -.226 ±.340
MAP .377 ±.391 -.129 ±.481 .116 ±.427 .219 ±.383

20 g's

Baseline 1.04 ±.376 .044 ±.422 .376 ±.415 .816 ±.441
Bayesian -1.13 ±.456 .065 ±.449 lost lock
MAP 1.00 ±.412 -.129 ±.457 .247 ±.416 .697 ±.446

3L
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VII. Conclusions and Recommendations

7.1 Conclusions

The ability to track a highly dynamic target is enhanced by the

addition of a third elemental filter to the multiple model adaptive

filter bank. Lower peak mean errors increase the likelihood of

achieving a kill with a laser weapon system. The additional

computational loading required by a third element becomes almost

insignificant if parallel processing techniques are employed.

The baseline MMAF does not encounter any difficulty with the

minimum range/maximum crossing rate condition; however, it

demonstrates divergent characteristics at a 100 Hz sample rate. This

poor performance at an increased sample rate indicates a need to

question the basic measurement model employed in each elemental

filter.

Initially, it was expected that the differences between Bayesian

and MAP estimation would be more noticeable. The anticipated faster

response of the MAP MMAF to maneuvers was not demonstrated. Average

mean tracking errors and the maximum mean excursions were very

similar in both approaches. The inability of the algorithms to

maintain consistent system identification, e.g., maintain high

conditional probabilities on the "best" matched model, could explain

these ambiguous results. Additionally, the reacquisition function

may have prevented more accurate and consistent system

identification; however, because it only appeared during 20 g

maneuvers, it is a relatively minor influence. Overall, the study
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shows that an additional element in the MMAF bank improves

performance and that both Bayesian and MAP estimation techniques

*support acuaetakn fhgl yai ibretargets.

7.2 Recommendations

Further investigation of the multiple model adaptive filter to

resolve the difficulties encountered and expand current knowledge is

recommended. Future efforts should address the following areas:

Development of more realistic target trajectories.
Specifically, the step changes in accelerations should be
replaced with models that more closely approximate typical
target behavior. This may allow the MMAF to maintain lock with
tighter tuning of the elemental filters.

Investigate the step bias in x-position observed only in
trajectory three

- Test the tracking algorithms against targets with varying shape "
functions caused by changes in target orientation and variations
in size, shape, and number of hot spots

- Indepth investigation of the 100 Hz sample rate, concentrating
on possible inaccuracies in the measurement model. By using a
single elemental filter, computational loading can be limited;
additionally, there would be no question whether the multiple
model formulation is the cause of this behavior.

- Implementation of the constant turn rate target acceleration
model (implemented by Suizu (131 in the extended Kalman filter
formulation) for one or more of the elemental filters. This
model more closely represents high performance aircraft evasive
actions, particularly at short range.

- Change hot spot separations to values more representative of
real world targets

- Add pseudo-noise to the position and velocity states to account
for the rotating reference frame of the tracker

- Replace the current impulsive control with a more realistic
control response

84



0

-."Improve the reacquisition function by preventing the data from

the diverging filters from being used for several sample periods -

following reacquisition. Currently, if the WMAF criteria .
(Bayesian or MAP) selects a diverging filter following
reacquisition, it is included even though its estimate is
degraded. By preventing the use of these estimates for a few
sample periods, the conditional probabilities could again
converge to appropriate values. -

Implement the algorithm on a small word-length machine

Investigate the implications of tracking the radiation centroid,
which may not be located on the target, rather than a physical
point on the target. Include the effects of the hot-spot

produced by laser illumination of the target on tracking
performance.
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Performance Plots for the Bayesian MMAF

139

..

°.

___ - 2.~ ~ ~~~



(C.

C)

C:)
C

C)-

LCLL

Ccr

CEU

LU
CEC

L)

C

LL.
06t S9,E OKOz-1 i 0

Figure B-1.a. Performance Plot for TiIA-BAY

1.43



CZ) 0

0 L

IZ 0 DU
U,

LJL

LUJ

LL_ 4 -L
06 99F Ovz Ol 0

(Sl3X~)8080

rigue B-b. erfomanc Plt fo TIC-BA

C.141



(0
cc:

(0

00

u

0 L
0

z C
N-4

U)J 0(f

CE:,

CD
LLJ 

-4
OC U)De*- D

7i-reB-1. erorrane Potfo ','NB0



(D

0 L

LLU

LCLJ

00,109, 00* OSO- 0 I0

CS12 0 ) 011

eiue31. PefrInePotfrTT-A

14



* . . . . .

. .

0D

4- 0 i

C-

UOO

ci)i
C uL

Xr
U-i-

U1)0

LU 0

Figure B-le. Performance Plot for TIT-BAY

144



CCo

+ 0D

z

0(n

CLU

I-4

LU 0

I.-- T

09,0 01?O 00*0 0 o 9 o-

eigure B-f Performance ?lot for TIEt-SAY

145



0

(0

CDD

CL

0 U

0LLJ

LLJU

U)0

LL 

0

06 9* v*s 91 1 OO-~

rigure B-2a. Perfonnaice Plot for TIFI-BAY

146



OCD

z0

0 LIL 0D
0,.. 0

Of U
-o," 0 .

LLL)

CE:r
-U

LU _

LL ,

06' ir ...iz 1 1

AI -

06"1 S9E O#'Z S'OVO 0t'

Figure B-Cb. Performance Plot for T!rI-BAY

147

... . . . .. . . .............. ... .... . -. •.- . . . .. . . . .. .



(0

0 L

U)0

z C
-4

-4J OL

ULU

Z1 S



K0

0

CEC

00
0

U) 0

CD

0-0

V))

C)

C)

CD

I.-r



0

CD

P, 0

C)

CDJ

LU

0

CL

LU 0

00*1 09*0 0,0 O9*0- O,1-

Figure B-'e. Performance Plot for 7I1'l-BAY

L50

. . . . . .. . . . . . . . . . . . . . . . .



LL

C)C

cz 0
-On-

UD

C)

UD
L.LU

b-4

V) CD

08 0 0O7'0 00*0 Ov *- 09*0

Figure B-f. Performance Plot 'or TI Fl'-BA'Y

151



-- ~ -- . . (0

C)

CDC

CLC

C-)

C)

C

LOJ

C

-J

06 't 90C-

7igure B-3a. Performance Plot for TQ2IM-BAY

152



C)

0

C) 0

uLJ
I0

CCE

LL-

rigure B-3b. Performance Plot for T2GC2[I-BAY

1.53



CL:

CCD

C uJ
(1C)

C-f!

OL0 0 0c -

Figure 3-3c. Performance Plot for '02Zr- -BAY



C)
C)

CED

CDLL
co)

CD

Wi C

CE C

cei 09'f *Q0Q 09 C- 09*1-

Figure B-3d. Performance Plot for 24-Y

155



C)

0I-C)
aLO

CD

a) L

CC)

CDN

CL~

0I CD

00) 00 00 C( - 0

Figure B-3e. Perform~ance Plot for T'G2,Ci-BAY

L56



iC

-0

0 LII

I--MCI-

LU C)

CE

CO C

r06 " CvO " OV1O--0 Cl 'I

Figure B-3f. Performance K~o for TZGZ1-AI

157



- .)

z0

D C

LU

LLLU

CC'

CCC

LLJ

Figure B-4a. Performance Plot for TZG1O 1-BAY

153



z

CDC

U

Co C

LLL)

CD-

CCC

C)

CD.

p LL
O6VS E0v z S1 ' Q O O0

Figure B-4b. Performance Plot for T"GIOT-BAY

159



C)I

CEC

L0

IL v)

CL.

- C)

CD

LU) --

160



UU

0 L

V)0

0

- 010 , 01 03 OO CL

FiueB4. Prfrac ltfo )I~-A

o1 1



C

C)

LJ

CCD

CfCD
LL"J

V)

LU 0

II



CEC

CD

+ 0

+ C)

CDC

-C L)J

0-

CO

CO

CLC

C)
LU C

CI:

U

0890 00"0 08-d- 09,1- O

SFigure B-4f. Performance Plot for '.2"GI>I1-BAY

163



C)

CDC

U-)
CDC

CL. C

uJ _

C)V
CDC

C-)0

U)

-LJ

F.igure B-5a. Performance Plot for TYUIOF3-BAY

1 64



C)
CDC

CD 0

C

- U)

CDC

LCLL

cCc

LLLU

0 v' !i"

CA )8 88

-iur B-b efomnePotfr''J,9'-A

a16



IC

rC

aC

UDC

CD

C)

cn

CD CD

LU 0

Ov09 1 09*0 00,0 80

Figure B-5c. Performance IQ1pt for TZGI10F 3-BAY

166

.......... e..P.



CD D
CO

+

C)

CD

0 L

CD%

LU 0J

LJ

09 0 OzO0V0 1- zz ZE

F'igure B-56. Performance Plot for T2GOF'-bAY

167



C)

(0

CIC

- C)
C!C)

+ CD
C

C)

Cr),-
U

0

LUJ C)

CEC

LUJ

09,0 0C'8O '0V 0L0-

Figure B-5e. Performance Plot for T^GIOFJ-BAY

163

A - . . . .



CCZ

0

z

(I10
LOU

V1) Co

LU 0

LLU
09*0 0, 02*0- 09*1- Ov,~

Figure 3-5f. Performance Plot Eor 21F-A

169



7p

C)

(D

z C)

VI)

CDC

C)

CDC

LUJ

LLJ

Figure B-6a. Performance Plot for T'G-O~f.-BAY

170



-CD

C)

(0

z~C)
CDC

LO

CD

0 LU

LUJ

LUJ

CE: CD

CEC

LUJ

F'igure B-6b. Performiance Plot for TZG3D:i-BAY

171



C)

C)

CDC

U

+DLL
CD

CDC

CLCLLJ

z. C~

U')U

LUJ

0 1 ' U I 0 * C O 1

Figure B-6c. Performance Plot for TZG^-O'.-BAY

1 72



U/) 0 :-

+u

0 U)

LLLU

CO,

LU 0

00~ 00*0 00 OO- 009 -O'z I

Figure B-6d. Performance Plot for T-G23T-BAY

173



0 L

cfC)

00

CLL

C~)

rir

CZ)

LUJ

LUJ

OCEZ 0OS 1 OLO '0 0 06 0-

Figure B-6e. Performance Plot for T-GOM-BAY

1 74



(0

CEC

CD
- C)

C

C)

CD L

C

C'%J

CD
CL

ICD
a:l

CL

VM
(f)

00 1 00OA- 00O0 *G 00- 0

GIBI 08

* ~. -7igure B--6f. Performance Plot for T2C2O -BAY

175

pw



to

UC)
z 0)

Ln

LLJJ

Lil

U

Ln

-LJ

_ 0)

Figure B-7a. Performance Plot for T-G207^-BAY

176



0
z~C

-D C)

z CD

LOLL

CC C)

UL
r-r

LU

LI-.

069 * vsl 1 0 '0

FigreB-b. PefomacePlt orT-C-'O,2B 0

t77J



C)
C)

CED

CDC

0
C

LU -

Crr

1700



CDC

C) L

- C

CID CL

COC

C)

UCUL

cr

C)

LLJ C

-BA

Figure B-7d. rerforriance Plot for T2.292-BA

17T)



ADl!-Ai55 4 66 BAYESIAN VS MAP MULTIPLE MODEL ADAPTIVE ESTIMATION FOR 3d04
FIELD OF VIEWd EXPA.. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. . P A LOVING

UNCLSSIFIED MAR 85 RFITIGE/EE/85M-1 /G 12/1 NL

i flflffl..f..flfflflf

ME flfflffl...fflfflf



-4

lip..

L

111iL25 .61112

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



(0

U-) LO

z

0 J

C)U-

- - I- I

LUJ

00

Q-.i

X0

LU 0

LUJ

O9,l 0L0 0OV*- O6,0

Figure B-7e. Perform'ance Plot for T'GZCF-BAY



T-7.1 .1 7S

Cl-)

(C) LUJ

D 10
-J NJ

CL

uLJ 0-

00. 00,0 00,1- 00,z- 00,9-

Figure B-7f. Performance Plot for T2G20F2^-BAY

L1



0 .

C U,

U)j

C

LL.
06*t 9 E t~z 1 *1 01 * -

FigreB-a.Perorane lo fo TG2PIB 0

180



0 U

I-

U

LA-)
06*V 9's O~z 9 0 i *

S19 1 JU)8

Fiur B33. eroracePlt or'f MI-A
L13



CD

0 U

U)0

0 cr0

z 0

X

L0LJ

LLLU

00* 000 z000 0 -

Fiur B-c CJmac lo o I"2:-



ERROR( eI XELS)-
-1.60 -0.80 0.00 0.80 1.60

oD m
om C

-~ CJ<

-U

cfo ,
C)

o CJ)
0 -

mQ

Figure 3-8d. Performance Plot for TZG'TT-BAY

185



(D

CC

0.U

C,)r
C)LUj

Cl) CD

04

0-0

LU 0

LIU
09*Z 08,1 09*0 OV*O- O*I-

* - igure B-Be. Performance Plot for T"Y2 I-BAY

136



ERROR( PIXELS),
cs 0 -. 0 -0. 10 0.40 0.90

o m:

-~ -r p

o Cf,
-p

moc
C-CD

:z

* cri CI)

11



CD

C3
* CD

C)C
0 LO

C3 U
C

6-4

0 0(f

UL

CEC

U C:

C)

LU.

- .Figure B-9a. Performance Plot for T3G1OMM-BAY

188



z (0

CDz

CD

D~c 0 Un

LLuJ

Cl)C0

LU

LL

0 p* 1 01 '0

Figure B-9b. Performance Plot for T3G 10MM-BAY

189



0-4 C0

0-4

U

b-" C -

C~) 
0 ()

ZL
(N

U)7
X0

CO CD,

U) C
LUJ

00,9 00' vo 00zo0'o 00

Figure B-9c. Performance Plot for T3G101Th1-BAY

190



CCn

C)

C)

LI

~N

C)

CDC

C- C)(J

CD)

CdC)CD

C)
LC"'

CEC

LO C)

I-

0000' z 00*0 00 z.O~v

Figure B-9d. Performance Plot for T3GIONM-BAY

19 1

S+

• .. ....-..-- K_



7- .77 7. 7.

0 C0
C)

ccn

- CD

6-)

+0 0
CD -

V) c)

CL~

U)C-

U)C)
CLC

LU C)-

cc

U) C

0 6'Z 06 1 06'0 0OL*- 0VI- L

Figure B-.9e. Performance Plot for T3GIOMM0-BAY

192



-. .(0

CCC

C

+ C)
- C3

) U

- LC)

Q-

Cl)3
Lc.J

6-4

U') C3

09*1 09*0 O*- O z

Figure B-9f. Performance Plot for T3G1O4M-BAY

193



APPENDIX C

Performance Plots for the -MAP ?MWF

[94



C

z~C)

U~)

C

CDD

CC L

CDC

CC C)

LO~

O6~ OvO

Figure C-la. Performance Plot for TIMM-MAP

195



*.................-.-w C

C)

CD

(0

CD CD

CL

Cr))

LCLL

0

CCC

a:l
U

C17

i 0

LLJ

06'V S S3 OiKO-

Figure C-lb. Performance Plot for TIMM-MAP

196



LD

CEC

-n C

U)

4-)
C)
C

C

C LU

Cr)

Z C

LL C)

LUE

a::

LUJ
Oz, OLO' Oz*O ORO09,0

Figure C-Ic. Performance Plot for TIM-MAP

197

.. .. .......... . . . .



Lfl O

CD -

00* OLU000 O 00 ,

Fiur C-d eromnc lt o IT-

(198

CDL7U



CE:* V)
cnn

z
Q

LU

V) 0L
CDC

(\j

0-0

0
U-) C)

oo*] OS'O 00,0 O 'O- 00-

Figure C-le. Performance Plot for TUT-MAP

199



FD

CED

C-C

LI)

+ CD

CDD

UL

CD

i-

CDD
CD

CED

C)

LUJ
08*0 0 v0 00"0 0 v0 ORO~

Figure C-If. Performance Plot for TIMM- MP

200



IJ

C
Lfl

V~)

CLL

0C LiU
LUD

CD

U)j

CC CZ)

CCD

LUJ

CD

Figure C-2a. Performance Plot for T2G2MM-MAP

201



rC
CD

(IJ)

CD

CU

0LUj
LDLr

CDC

CE) C3
Cj

LU

-E

LL C

06 ' S9 r 00* 01 OO-

Figure C-2b. Performance Plot for T2G2N-MAP

202



C:)

pP.
a I-.Cn

CD

0DLL

CD LUJ

C)

LI

CE)

0L z QO 0?0 OF *- O2Oe

Figure C-2c. Performance Plot for T2G2'IIM-IIAP

203



. ~ - - - - I

CD3

Cc CF
U(3

C)

CD)

(.: (,n

CD~

CLU(

(n3

LCJ

0 9 09,0 00,0 0 90 - 09>-

F:Figure C-2d. Performance Plot for T2'G24M- IAP

204



CD

CIDD

CD

+ C
CD

CDU

CD(J

(fC)

CDi

D: CD

CD

ULJ CD

00. 0 q0 00"0 0(0-0

Figure C-2e. Performance Plot for T2G2M-MAP

205



CCC

CD

U

0 i

ci(D

U~) C,'-
LUJ

CDC

C

I.-

(n C
C

LUJ
06'0 OrO *0 0 090-

Figure C-2f. Performance Plot for T2G2101-MP

206



rr

-' 0)

0 C)

CDC LO

CD 0

UU

0L~

- u

U):
CCE

207



C

C

CDC

CDC

U

CLLJ
r(r,

- LU

LUC)
CEC

CE)

CrC)

ry-
LUJ

Figure C-3b. Performance Plot for T2G101il1-!AP

208



C)
C7

C)D

V) C

L

U)U

CDC

Il-

V)

LU O9 2000 R

pX

Figure C-3c. Performance Plot for T2GIOMM-MAP

209



IfC)

CCC

C)

&.,CZ) -

C)

U')

CD C)
L CD

I.-

CE

C)
LUJ

00v 00 z 00,0 00-00v

Figure C-3d. Performance Plot for T2GlOMM-MAP

210



C)-- ..

(0

CE2

0

z
0IL

LUJ

00

CL~

0
LUJ

LLJ
Oz 1 0 L OVO O 009

Figure C-3e. Per formiance Plot for T2G1OMM-,MAP

211



(0

-E

+

0

- LM

LUJ

CLC

-CD

LUJ

CE

V) C
U<

06, 01i'O 01 0- 0qI -

Figure C-3f. Performance Plot for T2GIO101-HAP

212



0I

CZ)

0(

(n

CDi

U-LU

LU

CEC

U')

(if

LUJ

C)
C)

06 ' S99 Of?91O-0 0

Figure C-4a. Performance Plot for T2GIOMM-MAP (Retuned)

K: 213



C)

U)C

I'-

o C)

CD C- .-

UuJ. o - 2 22
') -)

CD

L)J
Crr

Z) C,

UI
CE)

(J

-J

C)
U-° I

06 9 Op z O 0 a

N..

Figure C-4b. Performance Plot for T2GIOMM-MAP (Retuned)

214

<~~...-....-....... ............... ............-...
. . . . . . ., . . . .. , . ... . . . -,



CD

Lfl

C)C

CDD

UL

CCD

C)

Lc'J

CEC

I-i

C

Oz0L Oz0 ORO09,

Uigure C-4c. Performance Plot for T2GIOWI-MP (Retuned)

215



0

LO)

CD

C)

UL

(ID

m Cc

LU 0

(0 ~ 003 00 00

Figure C-4d. Performance Plot for T2GIOMM-!IAP (Retuned)

216



- - - '>r 7- "r-b u-

IC

C

+ CD
(0

+ D

cn M

CD -'J

U)L
:D CDL

CD L

(p c

CEc

CO CD

LUJ
OU1 08*0 OC O0O07,0- O

(S1]X I 188

Figure C-4e. Performance Plot for T2GI1MN-MAP (Retuned)

217



(0D

CE

C CD)

+ C

CDL~

CD
L) LUJ

CD

0l-

:D

CD
LUJ

OOCE0OE

*Figure C-4f. Performance Plot for T2GITI-MAP (Retuned)

2 18



C) C)

U)L

CC-)

C)

iL)

LUD

CDC

I-L
Qf

LUJ

0

CC-

0219

.............................



CDI

U')

r)

CEC

CD

C-:)

022



7' -7

0

(0

-C4-

C3

z

U)r

U)

LiLLi
r

U)

uCA

X L LI 0L ~-

tS13Jd)C)W

Figure C-5c. Performnce Plot for T2G2OI-M-AP

221



CD

(1)C)
CD

z

CD:
LU

(.r)
CD

C.)

U0

00t 000 00' - 00*9- 00 zi 0

Figure C-5d. Performance Plot for T=GONLIM-PMAp

222



C0

(0

CCC

z0

- CD

(ID
0LIU

CD

U" C

U

0O1 OC 1 0190 OC '- 0 1-

Figure C-5e. Performance Plot for TMGOII-IA

223



00

(ICZ)

0 i

Crv)

CLU

LUJ

cc

(I))
L0U

f S13IJ)80OO'L- 0:

Figure C-5f. Perfoi. 
PtfrT2O

1 4 ~

224



- -- .- '- -.--- 77!-

C

C))
LO

LO)

CDLI

C)

C3 U

CD-

CD Cn -

LIuJ

LU

a:EC

V-)

LUJ

L.L-

06 1 9 Or 'Z S, 1 0i OV D

Figure C-6a. Performance Plot for T3G2MDf-K!AP

225



C.. . . . . . . . . .. . . .

C)

z C)

CDCZ 0)

00

LUJ

LUJ

CE 0

C\J

_ C)

LL-

06 t S9, Ov~ z 9L 1 OO-

Figure C-6b. Performance Plot for T3G2t4-MAP

226



S

CE2

U'3 ')

cnz

00
z0

C-D C . ' -

(I) C)
ff

CEC

C)

t.'4.

00* 000 -0* 00u

Z I

Fiur C-c efracCltfrTGM-A

2 0

I-o -,o ,,,o o - :::::.

a7 .

I o .- % .,.. . o o o- . .C . ... . .. . .... .. . _. ,,( .F _., , .. :.. .. ... ... .": :: ;:."::-: .: : .. . .:::::::



-.

C)

CDC

U-)

+

7~C)
LD

- OLD

C)

(J-JJ

7::)
2: D

C.'J

U

CEC

09, 0* 00 09'0- 09
(sl~X 18 iO dd(I

Figure C-6d. Performance Plot for TMG2Mq-MAP

228



C)
LD

C)

ClC)

CDD

L)

CDUJ
-- D zD

cn C

C)\

C,

CE

(n ~C
ui

Figure C-6e. Performance Plot for T3C2N141-MAP

229



- - -~. - 7

CD

CI:i

(0

CDC

CD

D C)

CLC

LUJ

CI:

cn CD
LUJ

09*1 09,0 00,0 09,0- 0 9 >~

Figure C-6f. Performance Plot for T3G2.TI-14AP

S.230



CD

C:)

(n)
0) 0

CD)

C)LLJ

LU -)

CD0

700

LU

U-

06't 9 CO S1I 1 0 -0

Figure C-7a. Performance Plot for T3G1OM- 1AP

23 1



CD)

CD C)
n: C)

CD

OLd

LLJU

LU

CCn

C)

DC

C)

Figure C-7b. Performance Plot for T3GIOIVI-MAP

232



r

(CZ)

LLJ

0-0

M0

t C)

LUL

(Ju e C 7c e f rm n e P o f r TG)fL -,A

233~"~



C)

cfU)

CD

LU

DL

Cr)

CnC

C),

CD CD
C

LI-

CEC

00' 00'z 00*0 00*- 00

Figure C-7d. Performance Plot for T3G1OMM-M!AP

234



c~LD

cn if)

+

- CD

U)U
LUI

CDC

0D

C)

-
r

C)

CEC

U
O6*Z 06' 1 06'0 0OV'- 0 i

Figure C-7e. Performance Plot for T3G01OM-,NWA7

235



IW

cc:4

(,n0

a::

00

(JC L .i)

-~U-)

0-0

U)C
CCD

cn

0~0

CEC

C
LU C:

0O'1 0 90 0OzV0- Oz* 0-

F'igure C-7f. Performance Plot for T31M-A

236



r. " --
' ' -

-" " "-

C)
C

C)z C
0 LO

U)
C) C)

Q ._ Q

0 CLU

C)C

Of

C-C)
CE

U)EC

CD

U

-
Li C

P ~Figure C-8a. Performance Plot for T3G2Ih-MVA

237

. . .•...".



CD

)

Vr)

OU

0 L

D -D

C-)

Cr)C0

LU

CE0

'-

O6* v 9* Ot'2 "1 0KO-p

Figure C-8b. Performance Plot for T3G2OMM-1IAP

2 38



CC)

C)

C

C)L

CC) -L

CDC

CD

CEC

0000' 00*0 002z- *v

Figure C-8c. Performance Plot for T3G.2OMI-MIAP

239



CEC

CD

CD

CD)
U

6-4 0 U
CD

7::)

z C)

CCD
LUJ

U))

00's 00,11 00 6- 00*L- 00 11-9

Figure C-Cd. Performance Plot for T3G20M!-M4AP

240



a:7
CCZ

C)

zzU

CD

LLJLCD

CE)

CDCD
U

-24



IQ

IW

CEC

en

+ C)

CDC

CCD
- L)i

LOLd

CCo

CCo

LLU
cc-c.

Figure C-BE. Performance Plot for T3G2OM1-MAP

242



APPENDIX D

~~ Performance Plots for the Baseline MMAF-

Extended Run

243

IW



II EU

C

C:D

6-4

UDC
CDC

a)aL

C'CD

LL)
LOLL

CCC

V)

CNJ

LUJ

C)
LL.

99'1 8 ~ 0t0- 0

Figure D-la. Performance Plot for TTICI-AT



CDC

CDC

* c'J

L))
CELU

LUJ

0- CD

LUL

06V O 91'1 OV- 0

Figure D-1b. Performance Plot for TI:21-K-

2: 5



C

CIJ

C)
CrC)

Cz

OLLI

LLLU

Cl)i

LU C

T1)0

Figure D-1c. Performance Plot for TLIM-:MT

246



cc:

C)0

- 0)

2::

LOU

CZ)

0

LU 0

00 0900 '0 0 -- 0 *

Figure D-Il. Performance Plot for t-K-.T

247

............. .................. . . .



U' - .- 7

C)
C)

0 E
C)

+C

C

LUJ

D. C

C)

I- NQ

(IE

C)
LUJ

00'1 oso0 00,0 0;0 0

Figure D-le. Performance Plot for TIMM-XT

248



CEC

00

-4c-

om)

C

aa

0 U

-II

LUD

I- 
. - .

M C

LUE

090 Op0 0 0 0 _ 0 09<0-

Figure D-1f. Performance Plot for TI-*{-XT

249

*w..-*-naa a~~ .fmnug hm . ii4., r.t~. .. ** - . 2- "



V - - - . . ~ . - .C-

00

0

CD)
(r

LU-

c~i

LLU

06 Ir S9~ EV lpz s I 1 0-

Figure D-2a. Performance Plot for T2G2MIM-XKT

250



C3

CDC

a_ C0

000

U
elf C)LLJ

LD

C)

LU

CEC

LIn. CD 9 O ~ ~ I V

Figure D-2b. Performance Plot for T2G2MM-XT

251

....... .. .. .. .. ...



7 7

C)

aC:

-E

C)

C)

+C

C)C

C) L

Cr)

ULU

CDC

U)

LLJ 0

CCC

uCD

OVI0L OZVO O2.O-09*0

Figure D-2c. Performance Plot for T2G2MM-XT

252



C)
COC

- C)

(~0
CD

CDC

C)

CD L

M CLU
(1C)
LLLU

CE)

C)

U

09,1 09 0 000 090 09 1-~

Figure D-2d. Performance Plot for T2G2MM-XT

253



CCI

0

CD oD

ccE

C z

n0

,_!-5
L2LJ

C04
CC)

9 qx I j )4t0 t 3

• "i-'.Figure D-2e. Performance Plot for T2G2MM-XT

254.,-

I- .

". •, '. ','..'.- .... .. .. .. "0...,. . .. ... , . .".. . . . - ,. . . . ... : "
" . , L ' € _ ' . -% '. o'. '. ' . . • • - . . . . .. ....

.. . . . . .. . . .. "-0• , , , . . .i



CrC

0

0

0L)
0(f)

CLU

0

LI

0. 0 0 0 1 0 0

Figure D-2f. Performance Plot for T2G21IM-XT

255



00.

0 L

(r(D

OLLJ

Lhi

(1)C0

Lui

LL-

Figure D-3a. Performance Plot for T2GIOMM-XT

256

....................... -71...



IC

CD

z
CDC

CD CD
Q- CD

LU
0 UA

(0-
Ci C

L)I

U'E C

CcC

C3C

LUJ

_ C3r-. C

Figure D-3b. Performance Plot for T2GLOM-XT

257



S7

CI-4

U) C0

CD

0L.)i
U()

)
o LU

MaC

0

LUJ

v Z 09 1 090 00,0 09*0-
(-12X 1d 3 8O0 8

Figure D-3c. Performance Plot for T2GWOMM-XT

258



C)
C)

0l
CEC

CD
(IC,

C)

+C

CDC

C) L

0DQ

LUj

0(CD

CD

CEC

C)
LUJ

OO~z 00,0 00O*- 00 1'- 00*90.-

Figure D-3d. Performance Plot for T2G1OMM-XT

259



.........

CcC

C)

C)

(ID C

U) C

CDC

CI) CD~
ULU

026

whifi



CEC

C)C

C

z
LU

(I.)J
CLU

C

CD C)
L("4

F-

CEC

C)

LUJ
09'0 OF 0- OZ I- OF? 'e

Figure D-3f. Performance Plot for T2GlOMI4-XT

261



C)I

C0

0D -

U'n

0 0

U

LIuJ

CE
(.::D'-

UL

U) C
Cl)C0

U

LL- L9 tZS I OO~

Figure D-4a. Performance Plot for T3G2N1-XT

262



C)

z

C)

00

U

CDD

LUJ

LU

c

ci

U

-CJ

LL-

Figure D-4b. Performance Plot for T3G2MM-XT

263

U . *



r- ~wT---

0

CEC

00

c-C)

C)

CDC

0 L

u~U)
(nD

c~n
C)

M C3

-41

LUJ
09*1 09*0 000 80 O9 1-~

* - Figure D-4c. Performance Plot for T3G2MM-XT

264



C)2

CDC

CDC

c-n
z~C)

1C
C)

CCL

U) CD)
CDJ (O

09,1 9,0 0*0 0 *0- 9 1 J

FiueD4. Pefrac lt o 32MX

26



C)3

(Ip

CE0

0)

CD.

o 0)
CD

- 0 3
(0

CD

--

~. OLLJ
6C (f

-j

CL

M- CDJ

0

09,1 00000

Figure D-4e. Performance Plot for T3G2MM-XT

266

-. . .. - . . . . .. . . . . . . . . . . . ... .4



pZ

C)

CEC

U) C)

+ C)

CDC

CILJ

U')U

Q--

>o

CrC

V) C

C)
LU C

00* 09 00 *0%J- 0 1

226



C)

(%j

U)

CD~

CU

LCL..I

a:a

Cl)0

-j

C)

06~ Or " 91 1 1-

Figure D-5a. Performanc:e Plot for T3GlOIM1-XT

268

7. . .



CJ

W

(1)C0

0

C)~

Cl-)
(LO

(IC)

Z C0

U

09.1 09*0 00*0 09,0- 91

Figure D-5b. Performance Plot for T3G1OIIM-XT

269



C3

CDJ

CCD

0M
C)C

0

C

V))

M C

z 0O

C0

IC.)

LU E 0010,- 00 0

Figure D-5c. Performance Plot for T3G1OMM-XT

270



C3J

o 03

C3

z0

CC
LcJ

CD*

C CD

LUJ C)

U 0

09,1 09*0 00*0 09O O9 1

Figure D-5d. Performance Plot for T3G1OMM-XT

271



7 ,7,7 -

(f)C0

0

_D 0C

LU

0-4

LU 0

CL

M o. 0oz o*
(91XJ Qdd

Figue D-Se.Perormace lot or 3G~OM-X

C27

**... *~**.

. . . . . . . .. . . . . . . . . .

00..... ....0,0....,z-. 0*.*
. . . . . . . . . . . . . . . . .. . . . . . . . . . ..88]. .



O oI

CD

CD

I---

CD

C
- ." 4

CLL

x .. -

0 (OJ

LU -

--C3

U')

CD 0j

U

C)

Figure D-5f. Performance Plot for T3G1OMM-XT

273

. .. . . . .. ,



APPENDIX E

Performance Plots for the Baseline MMAF -Operated

at 100 Hz Sample Rate
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As noted in Section 6.2.2, the original code for the 100 Hz sample

rate resulted in loss of lock. Subsequent investigation revealed that

the reacquisition revealed that the reacquisition subroutine had not

been implemented correctly. The original code reset the covariance

matrix to the initial values, which are much higher than steady state

values and have no cross-terms. The higher than appropriate values

caused a very low emphasis on incoming data at a point when the measure-

ments should be weighted heavily. When the code is correctly implemented,

the MMAF does not lose lock, as shown in the following plots of trajectory

two at 20 g's. At this point, there is no explanation for the significant

-. bias following the maneuver recovery.
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